Difference between revisions of "2012 AMC 8 Problems/Problem 24"

(Created page with "A circle of radius 2 is cut into four congruent arcs. The four arcs are joined to form the star figure shown. What is the ratio of the area of the star figure to the area of the ...")
 
Line 19: Line 19:
  
 
<math> \textbf{(A)}\hspace{.05in}\frac{4-\pi}{\pi}\qquad\textbf{(B)}\hspace{.05in}\frac{1}\pi\qquad\textbf{(C)}\hspace{.05in}\frac{\sqrt2}{\pi}\qquad\textbf{(D)}\hspace{.05in}\frac{\pi-1}{\pi}\qquad\textbf{(E)}\hspace{.05in}\frac{3}\pi </math>
 
<math> \textbf{(A)}\hspace{.05in}\frac{4-\pi}{\pi}\qquad\textbf{(B)}\hspace{.05in}\frac{1}\pi\qquad\textbf{(C)}\hspace{.05in}\frac{\sqrt2}{\pi}\qquad\textbf{(D)}\hspace{.05in}\frac{\pi-1}{\pi}\qquad\textbf{(E)}\hspace{.05in}\frac{3}\pi </math>
 +
 +
==See Also==
 +
{{AMC8 box|year=2012|num-b=23|num-a=25}}

Revision as of 09:30, 24 November 2012

A circle of radius 2 is cut into four congruent arcs. The four arcs are joined to form the star figure shown. What is the ratio of the area of the star figure to the area of the original circle?

[asy] size(0,50); draw((-1,1)..(-2,2)..(-3,1)..(-2,0)..cycle); dot((-1,1)); dot((-2,2)); dot((-3,1)); dot((-2,0)); draw((1,0){up}..{left}(0,1)); dot((1,0)); dot((0,1)); draw((0,1){right}..{up}(1,2)); dot((1,2)); draw((1,2){down}..{right}(2,1)); dot((2,1)); draw((2,1){left}..{down}(1,0));[/asy]


$\textbf{(A)}\hspace{.05in}\frac{4-\pi}{\pi}\qquad\textbf{(B)}\hspace{.05in}\frac{1}\pi\qquad\textbf{(C)}\hspace{.05in}\frac{\sqrt2}{\pi}\qquad\textbf{(D)}\hspace{.05in}\frac{\pi-1}{\pi}\qquad\textbf{(E)}\hspace{.05in}\frac{3}\pi$

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions