Difference between revisions of "2010 USAJMO Problems"
m (→Problem 2) |
|||
Line 62: | Line 62: | ||
[[2010 USAMO Problems/Problem 4|Solution]] | [[2010 USAMO Problems/Problem 4|Solution]] | ||
+ | {{MAA Notice}} |
Revision as of 12:18, 4 July 2013
Contents
Day 1
Problem 1
A permutation of the set of positive integers is a sequence such that each element of appears precisely one time as a term of the sequence. For example, is a permutation of . Let be the number of permutations of for which is a perfect square for all . Find with proof the smallest such that is a multiple of .
Problem 2
Let be an integer. Find, with proof, all sequences of positive integers with the following three properties:
- ;
- for all ;
- given any two indices and (not necessarily distinct) for which , there is an index such that .
Problem 3
Let be a convex pentagon inscribed in a semicircle of diameter . Denote by the feet of the perpendiculars from onto lines , respectively. Prove that the acute angle formed by lines and is half the size of , where is the midpoint of segment .
Day 2
Problem 4
A triangle is called a parabolic triangle if its vertices lie on a parabola . Prove that for every nonnegative integer , there is an odd number and a parabolic triangle with vertices at three distinct points with integer coordinates with area .
Problem 5
Two permutations and of the numbers are said to intersect if for some value of in the range . Show that there exist permutations of the numbers such that any other such permutation is guaranteed to intersect at least one of these permutations.
Problem 6
Let be a triangle with . Points and lie on sides and , respectively, such that and . Segments and meet at . Determine whether or not it is possible for segments to all have integer lengths.
Solution The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.