Difference between revisions of "1973 USAMO Problems/Problem 5"
m (→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | |||
− | + | Assume that the cube roots of three distinct prime numbers can be three terms of an arithmetic progression. Let the three distinct prime numbers be <math>p</math>, <math>q</math>, and <math>r.</math> WLOG, let <math>p<q<r.</math> | |
− | |||
− | |||
Then, | Then, | ||
Line 16: | Line 13: | ||
<cmath>r^{\dfrac{1}{3}}=p^{\dfrac{1}{3}}+nd</cmath> | <cmath>r^{\dfrac{1}{3}}=p^{\dfrac{1}{3}}+nd</cmath> | ||
− | where <math>m</math>, <math>n</math> are distinct | + | where <math>m</math>, <math>n</math> are distinct integers, and <math>d</math> is the common difference in the progression. Then we have |
− | <cmath>nq^{\dfrac{1}{3}}-mr^{\dfrac{1}{3}}=(n-m)p^{\dfrac{1}{3}} | + | <cmath>nq^{\dfrac{1}{3}}-mr^{\dfrac{1}{3}}=(n-m)p^{\dfrac{1}{3}}</cmath> |
<cmath>n^{3}q-3n^{2}mq^{\dfrac{2}{3}}r^{\dfrac{1}{3}}+3nm^{2}q^{\dfrac{1}{3}}r^{\dfrac{2}{3}}-m^{3}r=(n-m)^{3}p</cmath> | <cmath>n^{3}q-3n^{2}mq^{\dfrac{2}{3}}r^{\dfrac{1}{3}}+3nm^{2}q^{\dfrac{1}{3}}r^{\dfrac{2}{3}}-m^{3}r=(n-m)^{3}p</cmath> | ||
Line 24: | Line 21: | ||
<cmath>3nm^{2}q^{\dfrac{1}{3}}r^{\dfrac{2}{3}}-3n^{2}mq^{\dfrac{2}{3}}r^{\dfrac{1}{3}}=(n-m)^{3}p+m^{3}r-n^{3}q</cmath> | <cmath>3nm^{2}q^{\dfrac{1}{3}}r^{\dfrac{2}{3}}-3n^{2}mq^{\dfrac{2}{3}}r^{\dfrac{1}{3}}=(n-m)^{3}p+m^{3}r-n^{3}q</cmath> | ||
− | <cmath>(3nmq^{\dfrac{1}{3}}r^{\dfrac{1}{3}})(mr^{\dfrac{1}{3}}-nq^{\dfrac{1}{3}})=(n-m)^{3}p+m^{3}r-n^{3}q | + | <cmath>(3nmq^{\dfrac{1}{3}}r^{\dfrac{1}{3}})(mr^{\dfrac{1}{3}}-nq^{\dfrac{1}{3}})=(n-m)^{3}p+m^{3}r-n^{3}q</cmath> |
− | <cmath>nq^{\dfrac{1}{3}}-mr^{\dfrac{1}{3}}=(n-m)p^{\dfrac{1}{3}} | + | <cmath>nq^{\dfrac{1}{3}}-mr^{\dfrac{1}{3}}=(n-m)p^{\dfrac{1}{3}}</cmath> |
<cmath>mr^{\dfrac{1}{3}}-nq^{\dfrac{1}{3}}=(m-n)p^{\dfrac{1}{3}}</cmath> | <cmath>mr^{\dfrac{1}{3}}-nq^{\dfrac{1}{3}}=(m-n)p^{\dfrac{1}{3}}</cmath> | ||
− | <cmath>(3nmq^{\dfrac{1}{3}}r^{\dfrac{1}{3}})((m-n)p^{\dfrac{1}{3}})=(n-m)^{3}p+m^{3}r-n^{3}q | + | <cmath>(3nmq^{\dfrac{1}{3}}r^{\dfrac{1}{3}})((m-n)p^{\dfrac{1}{3}})=(n-m)^{3}p+m^{3}r-n^{3}q</cmath> |
<cmath>q^{\dfrac{1}{3}}r^{\dfrac{1}{3}}p^{\dfrac{1}{3}}=\dfrac{(n-m)^{3}p+m^{3}r-n^{3}q}{(3mn)(m-n)}</cmath> | <cmath>q^{\dfrac{1}{3}}r^{\dfrac{1}{3}}p^{\dfrac{1}{3}}=\dfrac{(n-m)^{3}p+m^{3}r-n^{3}q}{(3mn)(m-n)}</cmath> | ||
Line 36: | Line 33: | ||
<cmath>(pqr)^{\dfrac{1}{3}}=\dfrac{(n-m)^{3}p+m^{3}r-n^{3}q}{(3mn)(m-n)}</cmath> | <cmath>(pqr)^{\dfrac{1}{3}}=\dfrac{(n-m)^{3}p+m^{3}r-n^{3}q}{(3mn)(m-n)}</cmath> | ||
− | + | Because <math>p</math>, <math>q</math>, <math>r</math> are distinct primes, <math>pqr</math> is not a perfect cube. Thus, the LHS is irrational but the RHS is rational, which is a contradiction. So, the cube roots of three distinct prime numbers cannot be three terms of an arithmetic progression. | |
− | |||
− | Thus, the LHS is irrational but the RHS is rational, which | ||
− | |||
− | |||
− | |||
− | |||
− | |||
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 20:19, 20 June 2013
Problem
Show that the cube roots of three distinct prime numbers cannot be three terms (not necessarily consecutive) of an arithmetic progression.
Solution
Assume that the cube roots of three distinct prime numbers can be three terms of an arithmetic progression. Let the three distinct prime numbers be , , and WLOG, let
Then,
where , are distinct integers, and is the common difference in the progression. Then we have
Because , , are distinct primes, is not a perfect cube. Thus, the LHS is irrational but the RHS is rational, which is a contradiction. So, the cube roots of three distinct prime numbers cannot be three terms of an arithmetic progression.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1973 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |