Difference between revisions of "1983 USAMO Problems/Problem 2"

m (See Also)
Line 44: Line 44:
 
== See Also ==
 
== See Also ==
 
{{USAMO box|year=1983|num-b=1|num-a=3}}
 
{{USAMO box|year=1983|num-b=1|num-a=3}}
 +
{{MAA Notice}}
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Inequality Problems]]
 
[[Category:Olympiad Inequality Problems]]

Revision as of 18:15, 3 July 2013

Problem

Prove that the zeros of

\[x^5+ax^4+bx^3+cx^2+dx+e=0\]

cannot all be real if $2a^2<5b$.

Solution

Lemma:

For all real numbers $x_1,x_2,\cdots x_5$,

\[2(x_1^2+x_2^2+\cdots+x_5^2)\ge\]

\[x_1x_2+x_1x_3+\cdots+x_4x_5\]

By the trivial inequality,

\[x^2+y^2\ge 2xy \Rightarrow \frac{x^2}{2} + \frac{y^2}{2} \ge xy\]

Making such an inequality for all the variable pairs and summing them, we find the lemma is true.

Now, let our roots be $x_1,x_2,\cdots,x_5$. By Vieta's, $a=x_1+x_2+\cdots+x_5$ and $b=x_1x_2+x_1x_3+\cdots+x_4x_5$

If we show that for all real $x_1,x_2,\cdots, x_5$ that $2a^2\ge 5b$, then we have a contradiction and all of $x_1,x_2,\cdots, x_5$ cannot be real. We start by rewriting $2a^2\ge 5b$ as

\[2(x_1+x_2+\cdots+x_5)^2\ge 5(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

We divide by $2$ and find

\[(x_1+x_2+\cdots+x_5)^2\ge \frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

Expanding the LHS, we have

\[x_1^2+x_2^2+\cdots+x_5^2+2(x_1x_2+x_1x_3+\cdots+x_4x_5)\ge\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

We subtract the sum in brackets, and then multiply by $2$ to find

\[2x_1^2+2x_2^2+\cdots+2x_5^2\ge x_1x_2+x_1x_3+\cdots+x_4x_5\]

which is true by our lemma.

See Also

1983 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png