Difference between revisions of "1950 AHSME Problems/Problem 34"
(→Solution) |
|||
Line 9: | Line 9: | ||
\textbf{(E)}\ \dfrac{\pi}{5}\text{ in}</math> | \textbf{(E)}\ \dfrac{\pi}{5}\text{ in}</math> | ||
==Solution== | ==Solution== | ||
− | {{ | + | When the circumference of a circle is increased by a percentage, the radius is also increased by the same percentage (or else the ratio of the circumference to the diameter wouldn't be <math>\pi</math> anymore) |
− | + | We see that the circumference was increased by <math>25\%</math>. This means the radius was also increased by <math>25\%</math>. The radius of the original balloon is <math>\frac{20}{2\pi}=\frac{10}{\pi}</math>. With the <math>25\%</math> increase, it becomes <math>\frac{12.5}{\pi}</math>. The increase is <math>\frac{12.5-10}{\pi}=\frac{2.5}{\pi}=\boxed{\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}}</math> | |
− | |||
==See Also== | ==See Also== |
Revision as of 18:28, 10 April 2013
Problem
When the circumference of a toy balloon is increased from inches to inches, the radius is increased by:
Solution
When the circumference of a circle is increased by a percentage, the radius is also increased by the same percentage (or else the ratio of the circumference to the diameter wouldn't be anymore) We see that the circumference was increased by . This means the radius was also increased by . The radius of the original balloon is . With the increase, it becomes . The increase is
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 33 |
Followed by Problem 35 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |