Difference between revisions of "2006 AIME I Problems/Problem 5"

(Solution)
(Solution 2)
Line 84: Line 84:
 
Factoring, we see that <math>52=13\cdot4</math>, <math>234=13\cdot18</math>, and <math>72=4\cdot18</math>. Setting <math>p=13</math>, <math>q=4</math>, and <math>r=18</math>, we see that
 
Factoring, we see that <math>52=13\cdot4</math>, <math>234=13\cdot18</math>, and <math>72=4\cdot18</math>. Setting <math>p=13</math>, <math>q=4</math>, and <math>r=18</math>, we see that
  
<cmath>2006=13^2\cdotx^2+4^2\cdoty^2+18^2\cdotz^2=169\cdot2+16\cdot3+324\cdot5</cmath>
+
<cmath>2006=13^2x^2+4^2y^2+18^2z^2=169\cdot2+16\cdot3+324\cdot5</cmath>
  
 
so our numbers check. Thus <math>104\sqrt{2}+468\sqrt{3}+144\sqrt{5}=(13\sqrt{2}+4\sqrt{3}+18\sqrt{5})^2</math>. Square rooting gives us <math>13\sqrt{2}+4\sqrt{3}+18\sqrt{5}</math> and our answer is <math>13\cdot4\cdot18=\boxed{936}</math>
 
so our numbers check. Thus <math>104\sqrt{2}+468\sqrt{3}+144\sqrt{5}=(13\sqrt{2}+4\sqrt{3}+18\sqrt{5})^2</math>. Square rooting gives us <math>13\sqrt{2}+4\sqrt{3}+18\sqrt{5}</math> and our answer is <math>13\cdot4\cdot18=\boxed{936}</math>

Revision as of 00:36, 13 July 2012

Problem

The number $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$ can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5},$ where $a, b,$ and $c$ are positive integers. Find $abc$.

Solution 1

We begin by equating the two expressions:

\[a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}\]

Squaring both sides yields:

\[2ab\sqrt{6} + 2ac\sqrt{10} + 2bc\sqrt{15} + 2a^2 + 3b^2 + 5c^2 = 104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006\]

Since $a$, $b$, and $c$ are integers, we can match coefficients:

\[2ab\sqrt{6} &=& 104\sqrt{6} \\
 2ac\sqrt{10} &=& 468\sqrt{10} \\
 2bc\sqrt{15} &=& 144\sqrt{15}\\
 2a^2 + 3b^2 + 5c^2 &=& 2006\] (Error compiling LaTeX. Unknown error_msg)

Solving the first three equations gives: \begin{eqnarray*}ab &=& 52\\  ac &=& 234\\  bc &=& 72 \end{eqnarray*}

Multiplying these equations gives $(abc)^2 = 52 \cdot 234 \cdot 72 = 2^63^413^2 \Longrightarrow abc = \boxed{936}$.


Solution 2

We realize that the quantity under the largest radical is a perfect square and attempt to rewrite the radicand as a square. Start by setting $x=\sqrt{2}$, $y=\sqrt{3}$, and $z=\sqrt{5}$. Since

\[(px+qy+rz)^2=p^2x^2+q^2y^2+r^2z^2+2(pqxy+prxz+qryz)\]

we attempt to rewrite the radicand in this form:

\[2006+2(52xy+234xz+72yz)\]

Factoring, we see that $52=13\cdot4$, $234=13\cdot18$, and $72=4\cdot18$. Setting $p=13$, $q=4$, and $r=18$, we see that

\[2006=13^2x^2+4^2y^2+18^2z^2=169\cdot2+16\cdot3+324\cdot5\]

so our numbers check. Thus $104\sqrt{2}+468\sqrt{3}+144\sqrt{5}=(13\sqrt{2}+4\sqrt{3}+18\sqrt{5})^2$. Square rooting gives us $13\sqrt{2}+4\sqrt{3}+18\sqrt{5}$ and our answer is $13\cdot4\cdot18=\boxed{936}$

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions