Difference between revisions of "1999 AIME Problems/Problem 3"

(Solution)
(Solution)
Line 5: Line 5:
 
We have  
 
We have  
  
:<math>n^2-19n+99=x^2\Longleftrightarrow n^2-19n+99-x^2=0\Longleftrightarrow n=\frac{19\pm \sqrt{4x^2-35}}{2}</math>
+
:<math>n^2-19n+99=x^2\iff n^2-19n+99-x^2=0\iff n=\frac{19\pm \sqrt{4x^2-35}}{2}</math>
  
 
This equation has solutions in integers if and only if for some odd nonnegative integer <math>q</math>, <math>4x^2-35=q^2</math>, or <math>(2x+q)(2x-q)=35</math>. Because <math>q</math> is odd, this makes both of the factors <math>2x+q</math> and <math>2x-q</math> odd, so <math>(2x+q, 2x-q)=(35, 1)</math> or <math>(7,5)</math>, giving <math>x=3</math> or <math>9</math>. This gives <math>n=1, 9, 10,</math> or <math>18</math>, and the sum is <math>1+9+10+18=\boxed{038}</math>.
 
This equation has solutions in integers if and only if for some odd nonnegative integer <math>q</math>, <math>4x^2-35=q^2</math>, or <math>(2x+q)(2x-q)=35</math>. Because <math>q</math> is odd, this makes both of the factors <math>2x+q</math> and <math>2x-q</math> odd, so <math>(2x+q, 2x-q)=(35, 1)</math> or <math>(7,5)</math>, giving <math>x=3</math> or <math>9</math>. This gives <math>n=1, 9, 10,</math> or <math>18</math>, and the sum is <math>1+9+10+18=\boxed{038}</math>.

Revision as of 15:32, 13 May 2012

Problem

Find the sum of all positive integers $\displaystyle n$ for which $\displaystyle n^2-19n+99$ is a perfect square.

Solution

We have

$n^2-19n+99=x^2\iff n^2-19n+99-x^2=0\iff n=\frac{19\pm \sqrt{4x^2-35}}{2}$

This equation has solutions in integers if and only if for some odd nonnegative integer $q$, $4x^2-35=q^2$, or $(2x+q)(2x-q)=35$. Because $q$ is odd, this makes both of the factors $2x+q$ and $2x-q$ odd, so $(2x+q, 2x-q)=(35, 1)$ or $(7,5)$, giving $x=3$ or $9$. This gives $n=1, 9, 10,$ or $18$, and the sum is $1+9+10+18=\boxed{038}$.

Alternate Solution

Suppose there is some $k$ such that $x^2 - 19x + 99 = k^2$. Completing the square, we have that $(x - 19/2)^2 + 99 - (19/2)^2 = k^2$, that is, $(x - 19/2)^2 + 35/4 = k^2$. Multiplying both sides by 4 and rearranging, we see that $(2k)^2 - (2x - 19)^2 = 35$. Thus, $(2k - 2x + 19)(2k + 2x - 19) = 35$. We then proceed as we did in the previous solution.

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions