Difference between revisions of "1950 AHSME Problems/Problem 43"
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | {{ | + | |
+ | Note that this is <math>\frac{1}{7}(1+\frac{1}{49}+\frac{1}{49^2}+...)+\frac{2}{49}(1+\frac{1}{49}+...)=\frac{9}{49}(1+\frac{1}{49}+...)</math>. Using the formula for a geometric series, we find that this is <math>\frac{9}{49}(\frac{1}{1-\frac{1}{49}})=\frac{9}{49}(\frac{1}{\frac{48}{49}})=\frac{9}{49}(\frac{49}{48})=\frac{9}{48}=\frac{3}{16} \Rightarrow \mathrm{(E)}</math> | ||
==See Also== | ==See Also== |
Revision as of 08:27, 4 May 2012
Problem
The sum to infinity of $\frac{1}{7}\plus{}\frac {2}{7^2}\plus{}\frac{1}{7^3}\plus{}\frac{2}{7^4}\plus{}...$ (Error compiling LaTeX. Unknown error_msg) is:
Solution
Note that this is . Using the formula for a geometric series, we find that this is
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 42 |
Followed by Problem 44 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |