Difference between revisions of "1950 AHSME Problems/Problem 25"
m |
|||
Line 8: | Line 8: | ||
<math> \log_{5}\frac{(125)(625)}{25} </math> can be simplified to <math> \log_{5}\ (125)(25) </math> since <math>25^2 = 625</math>. <math>125 = 5^3</math> and <math>5^2 = 25</math> so <math> \log_{5}\ 5^5 </math> would be the simplest form. In <math> \log_{5}\ 5^5 </math>, <math>5^x = 5^5</math>. Therefore, <math>x = 5</math> and the answer is <math>\boxed{\mathrm{(D)}\ 5}</math> | <math> \log_{5}\frac{(125)(625)}{25} </math> can be simplified to <math> \log_{5}\ (125)(25) </math> since <math>25^2 = 625</math>. <math>125 = 5^3</math> and <math>5^2 = 25</math> so <math> \log_{5}\ 5^5 </math> would be the simplest form. In <math> \log_{5}\ 5^5 </math>, <math>5^x = 5^5</math>. Therefore, <math>x = 5</math> and the answer is <math>\boxed{\mathrm{(D)}\ 5}</math> | ||
− | {{AHSME box|year=1950|num-b=24|num-a=26}} | + | == See Also == |
+ | {{AHSME 50p box|year=1950|num-b=24|num-a=26}} | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 07:34, 29 April 2012
Problem
The value of is equal to:
Solution
can be simplified to since . and so would be the simplest form. In , . Therefore, and the answer is
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Problem 26 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |