Difference between revisions of "1983 AIME Problems/Problem 13"
m (removed miscellaneous links) |
(→Solution) |
||
Line 2: | Line 2: | ||
For <math>\{1, 2, 3, \ldots, n\}</math> and each of its non-empty subsets, an alternating sum is defined as follows. Arrange the number in the subset in decreasing order and then, beginning with the largest, alternately add and subtract succesive numbers. For example, the alternating sum for <math>\{1, 2, 4, 6,9\}</math> is <math>9-6+4-2+1=6</math> and for <math>\{5\}</math> it is simply <math>5</math>. Find the sum of all such alternating sums for <math>n=7</math>. | For <math>\{1, 2, 3, \ldots, n\}</math> and each of its non-empty subsets, an alternating sum is defined as follows. Arrange the number in the subset in decreasing order and then, beginning with the largest, alternately add and subtract succesive numbers. For example, the alternating sum for <math>\{1, 2, 4, 6,9\}</math> is <math>9-6+4-2+1=6</math> and for <math>\{5\}</math> it is simply <math>5</math>. Find the sum of all such alternating sums for <math>n=7</math>. | ||
− | == Solution == | + | == Solution 1== |
Let <math>S</math> be a non-[[empty set | empty]] [[subset]] of <math>\{1,2,3,4,5,6\}</math>. | Let <math>S</math> be a non-[[empty set | empty]] [[subset]] of <math>\{1,2,3,4,5,6\}</math>. | ||
Line 8: | Line 8: | ||
Because there are <math>63</math> of these pairs, the sum of all possible subsets of our given set is <math>63*7</math>. However, we forgot to include the subset that only contains <math>7</math>, so our answer is <math>64\cdot 7=\boxed{448}</math>. | Because there are <math>63</math> of these pairs, the sum of all possible subsets of our given set is <math>63*7</math>. However, we forgot to include the subset that only contains <math>7</math>, so our answer is <math>64\cdot 7=\boxed{448}</math>. | ||
+ | |||
+ | == Solution 2== | ||
+ | |||
+ | Consider a given subset <math>T</math> of <math>S</math> that contains 7; then there is a subset <math>T'</math> which contains all the elements of <math>T</math> except for 7, and only those. Since each element of <math>T'</math> has one element fewer preceding it than it does in <math>T</math>, their signs are opposite; so the sum of the alternating sums of <math>T</math> and <math>T'</math> is equal to 7. There are <math>2^6</math> subsets containing 7, so our answer is <math>7 * 2^6 = \boxed{448}</math>. | ||
== See Also == | == See Also == |
Revision as of 19:22, 3 September 2012
Contents
Problem
For and each of its non-empty subsets, an alternating sum is defined as follows. Arrange the number in the subset in decreasing order and then, beginning with the largest, alternately add and subtract succesive numbers. For example, the alternating sum for
is
and for
it is simply
. Find the sum of all such alternating sums for
.
Solution 1
Let be a non- empty subset of
.
Then the alternating sum of plus the alternating sum of
with 7 included is 7. In mathematical terms,
. This is true because when we take an alternating sum, each term of
has the opposite sign of each corresponding term of
.
Because there are of these pairs, the sum of all possible subsets of our given set is
. However, we forgot to include the subset that only contains
, so our answer is
.
Solution 2
Consider a given subset of
that contains 7; then there is a subset
which contains all the elements of
except for 7, and only those. Since each element of
has one element fewer preceding it than it does in
, their signs are opposite; so the sum of the alternating sums of
and
is equal to 7. There are
subsets containing 7, so our answer is
.
See Also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |