Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 2"

m
Line 6: Line 6:
  
 
----
 
----
 
+
{{Mock AIME box|year=2006-2007|n=2|num-b=1|num-a=3}}
*[[Mock AIME 2 2006-2007 Problems/Problem 1 | Previous Problem]]
 
 
 
*[[Mock AIME 2 2006-2007 Problems/Problem 3 | Next Problem]]
 
 
 
*[[Mock AIME 2 2006-2007]]
 

Revision as of 09:49, 4 April 2012

Problem

The set $S$ consists of all integers from $1$ to $2007$, inclusive. For how many elements $n$ in $S$ is $f(n) = \frac{2n^3+n^2-n-2}{n^2-1}$ an integer?

Solution

$f(n) = \frac{2n^3+n^2-n-2}{n^2-1} = \frac{(n - 1)(2n^2 + 3n + 2)}{(n - 1)(n + 1)} = \frac{2n^2 + 3n + 2}{n + 1} = 2n + 1 + \frac1{n+1}$. So in fact, there are 0 such elements of $S$.


Mock AIME 2 2006-2007 (Problems, Source)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15