Difference between revisions of "2012 AIME I Problems/Problem 10"
JohnPeanuts (talk | contribs) (Created page with "Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set ...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem 10== | ||
+ | |||
Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set of all numbers of the form <math>\frac{x-256}{1000}</math>, where <math>x</math> is in <math>\mathcal{S}</math>. In other words, <math>\mathcal{T}</math> is the set of numbers that result when the last three digits of each number in <math>\mathcal{S}</math> are truncated. Find the remainder when the tenth smallest element of <math>\mathcal{T}</math> is divided by <math>1000</math>. | Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set of all numbers of the form <math>\frac{x-256}{1000}</math>, where <math>x</math> is in <math>\mathcal{S}</math>. In other words, <math>\mathcal{T}</math> is the set of numbers that result when the last three digits of each number in <math>\mathcal{S}</math> are truncated. Find the remainder when the tenth smallest element of <math>\mathcal{T}</math> is divided by <math>1000</math>. | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | == See also == | ||
+ | {{AIME box|year=2012|n=I|num-b=9|num-a=11}} |
Revision as of 00:16, 17 March 2012
Problem 10
Let be the set of all perfect squares whose rightmost three digits in base are . Let be the set of all numbers of the form , where is in . In other words, is the set of numbers that result when the last three digits of each number in are truncated. Find the remainder when the tenth smallest element of is divided by .
Solution
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |