Difference between revisions of "2012 AIME I Problems/Problem 10"

(Created page with "Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set ...")
 
Line 1: Line 1:
 +
==Problem 10==
 +
 
Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set of all numbers of the form <math>\frac{x-256}{1000}</math>, where <math>x</math> is in <math>\mathcal{S}</math>. In other words, <math>\mathcal{T}</math> is the set of numbers that result when the last three digits of each number in <math>\mathcal{S}</math> are truncated. Find the remainder when the tenth smallest element of <math>\mathcal{T}</math> is divided by <math>1000</math>.
 
Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set of all numbers of the form <math>\frac{x-256}{1000}</math>, where <math>x</math> is in <math>\mathcal{S}</math>. In other words, <math>\mathcal{T}</math> is the set of numbers that result when the last three digits of each number in <math>\mathcal{S}</math> are truncated. Find the remainder when the tenth smallest element of <math>\mathcal{T}</math> is divided by <math>1000</math>.
 +
 +
== Solution ==
 +
 +
== See also ==
 +
{{AIME box|year=2012|n=I|num-b=9|num-a=11}}

Revision as of 00:16, 17 March 2012

Problem 10

Let $\mathcal{S}$ be the set of all perfect squares whose rightmost three digits in base $10$ are $256$. Let $\mathcal{T}$ be the set of all numbers of the form $\frac{x-256}{1000}$, where $x$ is in $\mathcal{S}$. In other words, $\mathcal{T}$ is the set of numbers that result when the last three digits of each number in $\mathcal{S}$ are truncated. Find the remainder when the tenth smallest element of $\mathcal{T}$ is divided by $1000$.

Solution

See also

2012 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions