Difference between revisions of "Rational Root Theorem"
(→Problems) |
Williamhu888 (talk | contribs) m (→Proof) |
||
Line 10: | Line 10: | ||
== Proof == | == Proof == | ||
− | Given <math>\frac{p}{q}</math> is a rational root of a polynomial <math>f(x)=a_nx^n+x_{n-1}x^{n-1}+\cdots +a_0</math>, we wish to show that <math>p|a_0</math> and <math>q|a_n</math>. Since <math>\frac{p}{q}</math> is a root, <cmath>0=a_n\left(\frac{p}{q}\right)^n+\cdots +a_0</cmath> Multiplying by <math>q^n</math>, we have: <cmath>0=a_np^n+a_{n-1}p^{n-1}q+\cdots+a_0q^n</cmath> Examining this in modulo <math>p</math>, we have <math>a_0q^n\equiv 0\pmod p</math>. As <math>q</math> and <math>p</math> are relatively prime, <math>p|a_0</math>. With the same logic, but with modulo <math>q</math>, we have <math>q|a_n</math>, and we are done. | + | Given <math>\frac{p}{q}</math> is a rational root of a polynomial <math>f(x)=a_nx^n+x_{n-1}x^{n-1}+\cdots +a_0</math>, where the coefficients are integers, we wish to show that <math>p|a_0</math> and <math>q|a_n</math>. Since <math>\frac{p}{q}</math> is a root, <cmath>0=a_n\left(\frac{p}{q}\right)^n+\cdots +a_0</cmath> Multiplying by <math>q^n</math>, we have: <cmath>0=a_np^n+a_{n-1}p^{n-1}q+\cdots+a_0q^n</cmath> Examining this in modulo <math>p</math>, we have <math>a_0q^n\equiv 0\pmod p</math>. As <math>q</math> and <math>p</math> are relatively prime, <math>p|a_0</math>. With the same logic, but with modulo <math>q</math>, we have <math>q|a_n</math>, and we are done. |
==Problems== | ==Problems== |
Revision as of 22:51, 15 March 2012
This article is a stub. Help us out by expanding it.
Given a polynomial with integral coefficients,
. The Rational Root Theorem states that if
has a rational root
with
relatively prime positive integers,
is a divisor of
and
is a divisor of
.
As a consequence, every rational root of a monic polynomial with integral coefficients must be integral.
This gives us a relatively quick process to find all "nice" roots of a given polynomial, since given the coefficients we have only a finite number of rational numbers to check.
Contents
Proof
Given is a rational root of a polynomial
, where the coefficients are integers, we wish to show that
and
. Since
is a root,
Multiplying by
, we have:
Examining this in modulo
, we have
. As
and
are relatively prime,
. With the same logic, but with modulo
, we have
, and we are done.
Problems
Easy
Factor the polynomial .
Intermediate
Find all rational roots of the polynomial .
Prove that is irrational, using the Rational Root Theorem.