Difference between revisions of "1950 AHSME Problems/Problem 47"

(Created page with "==Problem== A rectangle inscribed in a triangle has its base coinciding with the base <math>b</math> of the triangle. If the altitude of the triangle is <math>h</math>, and the ...")
 
Line 8: Line 8:
 
\textbf{(D)}\ x=\sqrt{\dfrac{hb}{2}} \qquad
 
\textbf{(D)}\ x=\sqrt{\dfrac{hb}{2}} \qquad
 
\textbf{(E)}\ x=\dfrac{1}{2}b</math>
 
\textbf{(E)}\ x=\dfrac{1}{2}b</math>
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See Also==
 +
{{AHSME 50p box|year=1950|num-b=46|num-a=48}}
 +
 +
[[Category:Introductory Geometry Problems]]

Revision as of 07:42, 29 April 2012

Problem

A rectangle inscribed in a triangle has its base coinciding with the base $b$ of the triangle. If the altitude of the triangle is $h$, and the altitude $x$ of the rectangle is half the base of the rectangle, then:

$\textbf{(A)}\ x=\dfrac{1}{2}h \qquad \textbf{(B)}\ x=\dfrac{bh}{b+h} \qquad \textbf{(C)}\ x=\dfrac{bh}{2h+b} \qquad \textbf{(D)}\ x=\sqrt{\dfrac{hb}{2}} \qquad \textbf{(E)}\ x=\dfrac{1}{2}b$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 46
Followed by
Problem 48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions