Difference between revisions of "2002 AMC 12B Problems/Problem 23"

(See also)
m
Line 32: Line 32:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
* [[http://www.cuudulieu24h.com cuu du lieu]]
 
* [[http://noithathoangduy.com.vn noithat]]
 
* [[http://baovevn.vn/cong-ty-tu-van-nghiep-vu-bao-ve/ cong ty bao ve]]
 
* [[http://uvc-thanhlapcongty.com/dang-ky-online/dang-ky-thanh-lap-doanh-nghiep.html thành lập doanh nghiệp]]
 
[[http://ihrp.fis.com.vn/ Phần mềm nhân sự]]
 
[[http://ihrp.fis.com.vn/ Quản lý Nhân sự]]
 
[[http://ihrp.fis.com.vn/ Phần mềm quản lý nhân sự tiền lương]]
 
[[http://thamtuthanglong.com/ tham tu]]
 
[[http://thamtuthanglong.com/ cong ty tham tu]]
 
[[http://uvc-thanhlapcongty.com/cung-cap-dich-vu/dich-vu-ke-toan.html dịch vụ kế toán]]
 
[[http://uvc-thanhlapcongty.com/cung-cap-dich-vu/dich-vu-ke-toan.html dich vu ke toan]]
 
[[http://www.chiemhoa.vn/ ke sieu thi]]
 
[[http://www.chiemhoa.vn/ quay ke]]
 

Revision as of 11:06, 13 January 2012

Problem

In $\triangle ABC$, we have $AB = 1$ and $AC = 2$. Side $\overline{BC}$ and the median from $A$ to $\overline{BC}$ have the same length. What is $BC$?

$\mathrm{(A)}\ \frac{1+\sqrt{2}}{2} \qquad\mathrm{(B)}\ \frac{1+\sqrt{3}}2 \qquad\mathrm{(C)}\ \sqrt{2} \qquad\mathrm{(D)}\ \frac 32 \qquad\mathrm{(E)}\ \sqrt{3}$

Solution

2002 12B AMC-23.png

Let $D$ be the foot of the median from $A$ to $\overline{BC}$, and we let $AD = BC = 2a$. Then by the Law of Cosines on $\triangle ABD, \triangle ACD$, we have \begin{align*} 1^2 &= a^2 + (2a)^2 - 2(a)(2a)\cos ADB \\ 2^2 &= a^2 + (2a)^2 - 2(a)(2a)\cos ADC  \end{align*}

Since $\cos ADC = \cos (180 - ADB) = -\cos ADB$, we can add these two equations and get

\[5 = 10a^2\]

Hence $a = \frac{1}{\sqrt{2}}$ and $BC = 2a = \sqrt{2} \Rightarrow \mathrm{(C)}$.

Alternate Solution

From Stewart's Theorem, we have $(2)(1/2)a(2) + (1)(1/2)a(1) = (a)(a)(a) + (1/2)a(a)(1/2)a.$ Simplifying, we get $(5/4)a^3 = (5/2)a \implies (5/4)a^2 = 5/2 \implies a^2 = 2 \implies a = \boxed{\sqrt{2}}.$

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions