Difference between revisions of "2006 AMC 12B Problems/Problem 15"

m (Solution: LaTeX fix, replaced \sqrt32 with \sqrt{32})
m (Solution)
Line 37: Line 37:
 
== Solution ==
 
== Solution ==
  
Draw the altitude from <math>O</math> onto <math>DP</math> and call the point <math>H</math>. Because <math>\angle OAD</math> and <math>\angle ADP</math> are right angles due to being tangent to the circles, and the altitude creates <math>\angle OHD</math> as a right angle. <math>ADHO</math> is a rectangle with <math>OH</math> bisecting <math>DP</math>. The length <math>OP</math> is <math>4+2</math> and <math>HP</math> has a length of <math>2</math>, so by pythagorean's, <math>OH</math> is <math>\sqrt 32</math>.
+
Draw the altitude from <math>O</math> onto <math>DP</math> and call the point <math>H</math>. Because <math>\angle OAD</math> and <math>\angle ADP</math> are right angles due to being tangent to the circles, and the altitude creates <math>\angle OHD</math> as a right angle. <math>ADHO</math> is a rectangle with <math>OH</math> bisecting <math>DP</math>. The length <math>OP</math> is <math>4+2</math> and <math>HP</math> has a length of <math>2</math>, so by pythagorean's, <math>OH</math> is <math>\sqrt{32}</math>.
  
 
<math>2 \cdot \sqrt{32} + \frac{1}{2}\cdot2\cdot \sqrt{32} = 3\sqrt{32} = 12\sqrt{2}</math>, which is half the area of the hexagon, so the area of the entire hexagon is <math>2\cdot12\sqrt{2} = \boxed{(B)} \qquad24\sqrt{2}</math>
 
<math>2 \cdot \sqrt{32} + \frac{1}{2}\cdot2\cdot \sqrt{32} = 3\sqrt{32} = 12\sqrt{2}</math>, which is half the area of the hexagon, so the area of the entire hexagon is <math>2\cdot12\sqrt{2} = \boxed{(B)} \qquad24\sqrt{2}</math>

Revision as of 02:18, 23 December 2011

This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.

Problem

Circles with centers $O$ and $P$ have radii 2 and 4, respectively, and are externally tangent. Points $A$ and $B$ are on the circle centered at $O$, and points $C$ and $D$ are on the circle centered at $P$, such that $\overline{AD}$ and $\overline{BC}$ are common external tangents to the circles. What is the area of hexagon $AOBCPD$?

[asy] // from amc10 problem series unitsize(0.4 cm); defaultpen(linewidth(0.7) + fontsize(11)); pair A, B, C, D; pair[] O; O[1] = (6,0); O[2] = (12,0); A = (32/6,8*sqrt(2)/6); B = (32/6,-8*sqrt(2)/6); C = 2*B; D = 2*A; draw(Circle(O[1],2)); draw(Circle(O[2],4)); draw((0.7*A)--(1.2*D)); draw((0.7*B)--(1.2*C)); draw(O[1]--O[2]); draw(A--O[1]); draw(B--O[1]); draw(C--O[2]); draw(D--O[2]); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SW); label("$D$", D, NW); dot("$O$", O[1], SE); dot("$P$", O[2], SE); label("$2$", (A + O[1])/2, E); label("$4$", (D + O[2])/2, E);[/asy]

$\textbf{(A) } 18\sqrt {3} \qquad \textbf{(B) } 24\sqrt {2} \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 24\sqrt {3} \qquad \textbf{(E) } 32\sqrt {2}$

Solution

Draw the altitude from $O$ onto $DP$ and call the point $H$. Because $\angle OAD$ and $\angle ADP$ are right angles due to being tangent to the circles, and the altitude creates $\angle OHD$ as a right angle. $ADHO$ is a rectangle with $OH$ bisecting $DP$. The length $OP$ is $4+2$ and $HP$ has a length of $2$, so by pythagorean's, $OH$ is $\sqrt{32}$.

$2 \cdot \sqrt{32} + \frac{1}{2}\cdot2\cdot \sqrt{32} = 3\sqrt{32} = 12\sqrt{2}$, which is half the area of the hexagon, so the area of the entire hexagon is $2\cdot12\sqrt{2} = \boxed{(B)} \qquad24\sqrt{2}$

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions