Difference between revisions of "1971 Canadian MO Problems"
Airplanes1 (talk | contribs) (→Problem 6) |
Airplanes1 (talk | contribs) (→Problem 5) |
||
Line 29: | Line 29: | ||
== Problem 5 == | == Problem 5 == | ||
− | + | Let <math>p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x+a_0</math>, where the coefficients <math> a_i</math> are integers. If <math>p(0)</math> and <math>p(1)</math> are both odd, show that <math>p(x)</math> has no integral roots. | |
Revision as of 21:49, 13 December 2011
This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.
Contents
Problem 1
is a chord of a circle such that and Let be the center of the circle. Join and extend to cut the circle at Given find the radius of the circle
Problem 2
Let and be positive real numbers such that . Show that .
Problem 3
is a quadrilateral with . If is greater than , prove that .
Problem 4
Determine all real numbers such that the two polynomials and have at least one root in common.
Problem 5
Let , where the coefficients are integers. If and are both odd, show that has no integral roots.
Problem 6
Show that, for all integers , is not a multiple of 121. Solution