Difference between revisions of "1951 AHSME Problems/Problem 42"
Yankeesfan (talk | contribs) (Created page with "== Problem == If <math> x =\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}} </math>, then: <math> \textbf{(A)}\ x = 1\qquad\textbf{(B)}\ 0 < x < 1\qquad\textbf{(C)}\ 1 < x < 2\qquad\t...") |
|||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
We note that <math>x^2=1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}=1+x</math>. By the quadratic formula, <math>x=\dfrac{1\pm \sqrt{5}}{2}</math>. Because there are only positive square roots in <math>x</math>, <math>x</math> must be positive, thus, it is <math>\dfrac{1+\sqrt{5}}{2}\approx 1.618</math>. Thus, <math>\boxed{\textbf{(C)}\ 1 < x < 2}</math>. | We note that <math>x^2=1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}=1+x</math>. By the quadratic formula, <math>x=\dfrac{1\pm \sqrt{5}}{2}</math>. Because there are only positive square roots in <math>x</math>, <math>x</math> must be positive, thus, it is <math>\dfrac{1+\sqrt{5}}{2}\approx 1.618</math>. Thus, <math>\boxed{\textbf{(C)}\ 1 < x < 2}</math>. | ||
− | == See | + | == See Also == |
− | {{AHSME box|year=1951|num-b=41|num-a=43}} | + | {{AHSME 50p box|year=1951|num-b=41|num-a=43}} |
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 07:59, 29 April 2012
Problem
If , then:
Solution
We note that . By the quadratic formula, . Because there are only positive square roots in , must be positive, thus, it is . Thus, .
See Also
1951 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 41 |
Followed by Problem 43 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |