Difference between revisions of "1951 AHSME Problems/Problem 42"

(Created page with "== Problem == If <math> x =\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}} </math>, then: <math> \textbf{(A)}\ x = 1\qquad\textbf{(B)}\ 0 < x < 1\qquad\textbf{(C)}\ 1 < x < 2\qquad\t...")
 
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
 
We note that <math>x^2=1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}=1+x</math>. By the quadratic formula, <math>x=\dfrac{1\pm \sqrt{5}}{2}</math>. Because there are only positive square roots in <math>x</math>, <math>x</math> must be positive, thus, it is <math>\dfrac{1+\sqrt{5}}{2}\approx 1.618</math>. Thus, <math>\boxed{\textbf{(C)}\ 1 < x < 2}</math>.
 
We note that <math>x^2=1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}=1+x</math>. By the quadratic formula, <math>x=\dfrac{1\pm \sqrt{5}}{2}</math>. Because there are only positive square roots in <math>x</math>, <math>x</math> must be positive, thus, it is <math>\dfrac{1+\sqrt{5}}{2}\approx 1.618</math>. Thus, <math>\boxed{\textbf{(C)}\ 1 < x < 2}</math>.
== See also ==
+
== See Also ==
{{AHSME box|year=1951|num-b=41|num-a=43}}  
+
{{AHSME 50p box|year=1951|num-b=41|num-a=43}}  
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 07:59, 29 April 2012

Problem

If $x =\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}$, then:

$\textbf{(A)}\ x = 1\qquad\textbf{(B)}\ 0 < x < 1\qquad\textbf{(C)}\ 1 < x < 2\qquad\textbf{(D)}\ x\text{ is infinite}$ $\textbf{(E)}\ x > 2\text{ but finite}$

Solution

We note that $x^2=1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}=1+x$. By the quadratic formula, $x=\dfrac{1\pm \sqrt{5}}{2}$. Because there are only positive square roots in $x$, $x$ must be positive, thus, it is $\dfrac{1+\sqrt{5}}{2}\approx 1.618$. Thus, $\boxed{\textbf{(C)}\ 1 < x < 2}$.

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 41
Followed by
Problem 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions