Difference between revisions of "1950 AHSME Problems/Problem 10"

(Created page with "== Problem== After rationalizing the numerator of <math> \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}} </math>, the denominator in simplest form is: <math> \textbf{(A)}\ \sqrt{3}(\sqrt{3}...")
 
m (See Also)
Line 15: Line 15:
 
==See Also==
 
==See Also==
  
{{AHSME box|year=1950|num-b=8|num-a=10}}
+
{{AHSME box|year=1950|num-b=9|num-a=11}}

Revision as of 20:31, 13 November 2011

Problem

After rationalizing the numerator of $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}}$, the denominator in simplest form is:

$\textbf{(A)}\ \sqrt{3}(\sqrt{3}+\sqrt{2})\qquad\textbf{(B)}\ \sqrt{3}(\sqrt{3}-\sqrt{2})\qquad\textbf{(C)}\ 3-\sqrt{3}\sqrt{2}\qquad\\ \textbf{(D)}\ 3+\sqrt6\qquad\textbf{(E)}\ \text{None of these answers}$

Solution

To rationalize the numerator, multiply by the conjugate.

\[\frac{\sqrt3 - \sqrt2}{\sqrt3}\cdot \frac{\sqrt3 + \sqrt2}{\sqrt3 + \sqrt2} = \frac{1}{3+\sqrt6}.\]

The denominator is $\boxed{\mathrm{(D)}\text{ } 3+\sqrt6 .}$

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions