Difference between revisions of "1983 USAMO Problems/Problem 2"

Line 28: Line 28:
 
Dividing by <math>2</math> gives us the desired.
 
Dividing by <math>2</math> gives us the desired.
  
Making such an inequality for all the variable pairs and summing  
+
Making such an inequality for all the variable pairs and summing them, we find the lemma is true.
 
 
them, we find the lemma is true.
 
  
 
Now, we start by plugging in our Vieta's: Let our roots be  
 
Now, we start by plugging in our Vieta's: Let our roots be  
Line 38: Line 36:
 
<math>a=x_1+x_2+\cdots+x_5, b=x_1x_2+x_1x_3+\cdots+x_4x_5</math>
 
<math>a=x_1+x_2+\cdots+x_5, b=x_1x_2+x_1x_3+\cdots+x_4x_5</math>
  
If we show that for all real <math>x_1,x_2,\cdots, x_5</math> that <math>2a^2\ge 5b</math>,
+
If we show that for all real <math>x_1,x_2,\cdots, x_5</math> that <math>2a^2\ge 5b</math>, then we have a contradiction and all of <math>x_1,x_2,\cdots, x_5</math> cannot be real. We start by rewriting <math>2a^2\ge 5b</math> as
 
 
then we have a contradiction and all of <math>x_1,x_2,\cdots, x_5</math> cannot  
 
 
 
be real. We start by rewriting <math>2a^2\ge 5b</math> as
 
  
<cmath>2(x_1+x_2+\cdots+x_5)^2\ge</cmath>
+
<cmath>2(x_1+x_2+\cdots+x_5)^2\ge 5(x_1x_2+x_1x_3+\cdots+x_4x_5)</cmath>
 
 
<cmath>5(x_1x_2+x_1x_3+\cdots+x_4x_5)</cmath>
 
  
 
We divide by <math>2</math> and find
 
We divide by <math>2</math> and find
  
<cmath>(x_1+x_2+\cdots+x_5)^2\ge</cmath>
+
<cmath>(x_1+x_2+\cdots+x_5)^2\ge \frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)</cmath>
 
 
<cmath>\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)</cmath>
 
  
 
Expanding the LHS, we have
 
Expanding the LHS, we have
  
<cmath>x_1^2+x_2^2+\cdots+x_5^2+2(x_1x_2+x_1x_3+\cdots+x_4x_5)\ge</cmath>
+
<cmath>x_1^2+x_2^2+\cdots+x_5^2+2(x_1x_2+x_1x_3+\cdots+x_4x_5)\ge\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)</cmath>
 
 
<cmath>\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)</cmath>
 
  
 
Aha! We subtract out the second symmetric sums, and then multiply  
 
Aha! We subtract out the second symmetric sums, and then multiply  
Line 64: Line 52:
 
by <math>2</math> to find
 
by <math>2</math> to find
  
<cmath>2x_1^2+2x_2^2+\cdots+2x_5^2\ge</cmath>
+
<cmath>2x_1^2+2x_2^2+\cdots+2x_5^2\ge x_1x_2+x_1x_3+\cdots+x_4x_5</cmath>
 
 
<cmath>x_1x_2+x_1x_3+\cdots+x_4x_5</cmath>
 
  
 
which is true by our lemma.
 
which is true by our lemma.

Revision as of 18:15, 13 November 2011

1983 USAMO Problem 1

Prove that the zeros of

\[x^5+ax^4+bx^3+cx^2+dx+e=0\]

cannot all be real if $2a^2<5b$.


Solution

Lemma:

For all real numbers $x_1,x_2,\cdots, x_3$,

\[2(x_1^2+x_2^2+\cdots+x_5^2)\ge\]

\[x_1x_2+x_1x_3+\cdots+x_4x_5\]

We solve this cylicallly by showing

\[\frac{1}{2}x^2+\frac{1}{2}y^2\ge xy\]

By the trivial inequality, $(x-y)^2\ge 0$, or $x^2+y^2-2xy\ge 0$.

\[x^2+y^2\ge 2xy\]

Dividing by $2$ gives us the desired.

Making such an inequality for all the variable pairs and summing them, we find the lemma is true.

Now, we start by plugging in our Vieta's: Let our roots be

$x_1,x_2,\cdots,x_5$. This means be Vieta's that

$a=x_1+x_2+\cdots+x_5, b=x_1x_2+x_1x_3+\cdots+x_4x_5$

If we show that for all real $x_1,x_2,\cdots, x_5$ that $2a^2\ge 5b$, then we have a contradiction and all of $x_1,x_2,\cdots, x_5$ cannot be real. We start by rewriting $2a^2\ge 5b$ as

\[2(x_1+x_2+\cdots+x_5)^2\ge 5(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

We divide by $2$ and find

\[(x_1+x_2+\cdots+x_5)^2\ge \frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

Expanding the LHS, we have

\[x_1^2+x_2^2+\cdots+x_5^2+2(x_1x_2+x_1x_3+\cdots+x_4x_5)\ge\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

Aha! We subtract out the second symmetric sums, and then multiply

by $2$ to find

\[2x_1^2+2x_2^2+\cdots+2x_5^2\ge x_1x_2+x_1x_3+\cdots+x_4x_5\]

which is true by our lemma.