Difference between revisions of "1950 AHSME Problems/Problem 4"

(Solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Reduced to lowest terms, <math> \frac{a^{2}-b^{2}}{ab} </math> - <math> \frac{ab-b^{2}}{ab-a^{2}} </math> is equal to:
+
Reduced to lowest terms, <math> \frac{a^{2}-b^{2}}{ab} - \frac{ab-b^{2}}{ab-a^{2}} </math> is equal to:
  
 
<math> \textbf{(A)}\ \frac{a}{b}\qquad\textbf{(B)}\ \frac{a^{2}-2b^{2}}{ab}\qquad\textbf{(C)}\ a^{2}\qquad\textbf{(D)}\ a-2b\qquad\textbf{(E)}\ \text{None of these} </math>
 
<math> \textbf{(A)}\ \frac{a}{b}\qquad\textbf{(B)}\ \frac{a^{2}-2b^{2}}{ab}\qquad\textbf{(C)}\ a^{2}\qquad\textbf{(D)}\ a-2b\qquad\textbf{(E)}\ \text{None of these} </math>
  
==Solution==
+
== Solution ==
We can use difference of two squares to expand <math>a^2-b^2=(a-b)(a+b)</math> and factor to get <math>ab-b^{2}=b(a-b)</math> and <math>a^2-ab=a(a-b)</math>
 
 
<math> \dfrac{a^{2}-b^{2}}{ab}  -  \dfrac{ab-b^{2}}{ab-a^{2}} =\dfrac{(a-b)(a+b)}{ab}-\dfrac{b(a-b)}{a(a-b)}</math>
 
  
We can further factor to get <math>\dfrac{(a-b)(a+b)}{ab}-\dfrac{b(a-b)}{a(a-b)}</math> If we assume b is not equal to a, this is equal to <math>\dfrac{(a-b)(a+b)}{ab}-\dfrac{b}{a}=\dfrac{(a-b)(a+b)}{ab}-\dfrac{b^2}{ab}=\dfrac{(a-b)(a+b)-b^2}{ab}=\dfrac{a^2-2b^2}{ab}</math>
+
We start off by simplifying the second term.
  
The answer is <math>\boxed{\textbf{(B)}\ \frac{a^{2}-2b^{2}}{ab}}</math>
+
<cmath>-\frac{ab-b^2}{ab-a^2} = -\frac{b(a-b)}{-a(a-b)} = \frac{b}{a}.</cmath>
 +
 
 +
Now create a common denominator and simplify.
 +
 
 +
<cmath>\frac{a^2-b^2}{ab}+\frac{b}{a}=\frac{a^2-b^2}{ab}+\frac{b^2}{ab} = \frac{a^2}{ab} = \boxed{\mathrm{(A) }\frac{a}{b}}</cmath>
  
 
==See Also==
 
==See Also==
  
 
{{AHSME box|year=1950|num-b=3|num-a=5}}
 
{{AHSME box|year=1950|num-b=3|num-a=5}}

Revision as of 19:54, 13 November 2011

Problem

Reduced to lowest terms, $\frac{a^{2}-b^{2}}{ab} - \frac{ab-b^{2}}{ab-a^{2}}$ is equal to:

$\textbf{(A)}\ \frac{a}{b}\qquad\textbf{(B)}\ \frac{a^{2}-2b^{2}}{ab}\qquad\textbf{(C)}\ a^{2}\qquad\textbf{(D)}\ a-2b\qquad\textbf{(E)}\ \text{None of these}$

Solution

We start off by simplifying the second term.

\[-\frac{ab-b^2}{ab-a^2} = -\frac{b(a-b)}{-a(a-b)} = \frac{b}{a}.\]

Now create a common denominator and simplify.

\[\frac{a^2-b^2}{ab}+\frac{b}{a}=\frac{a^2-b^2}{ab}+\frac{b^2}{ab} = \frac{a^2}{ab} = \boxed{\mathrm{(A) }\frac{a}{b}}\]

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions