Difference between revisions of "1950 AHSME Problems/Problem 4"
(→Solution) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Reduced to lowest terms, <math> \frac{a^{2}-b^{2}}{ab} | + | Reduced to lowest terms, <math> \frac{a^{2}-b^{2}}{ab} - \frac{ab-b^{2}}{ab-a^{2}} </math> is equal to: |
<math> \textbf{(A)}\ \frac{a}{b}\qquad\textbf{(B)}\ \frac{a^{2}-2b^{2}}{ab}\qquad\textbf{(C)}\ a^{2}\qquad\textbf{(D)}\ a-2b\qquad\textbf{(E)}\ \text{None of these} </math> | <math> \textbf{(A)}\ \frac{a}{b}\qquad\textbf{(B)}\ \frac{a^{2}-2b^{2}}{ab}\qquad\textbf{(C)}\ a^{2}\qquad\textbf{(D)}\ a-2b\qquad\textbf{(E)}\ \text{None of these} </math> | ||
− | ==Solution== | + | == Solution == |
− | |||
− | |||
− | |||
− | We | + | We start off by simplifying the second term. |
− | + | <cmath>-\frac{ab-b^2}{ab-a^2} = -\frac{b(a-b)}{-a(a-b)} = \frac{b}{a}.</cmath> | |
+ | |||
+ | Now create a common denominator and simplify. | ||
+ | |||
+ | <cmath>\frac{a^2-b^2}{ab}+\frac{b}{a}=\frac{a^2-b^2}{ab}+\frac{b^2}{ab} = \frac{a^2}{ab} = \boxed{\mathrm{(A) }\frac{a}{b}}</cmath> | ||
==See Also== | ==See Also== | ||
{{AHSME box|year=1950|num-b=3|num-a=5}} | {{AHSME box|year=1950|num-b=3|num-a=5}} |
Revision as of 19:54, 13 November 2011
Problem
Reduced to lowest terms, is equal to:
Solution
We start off by simplifying the second term.
Now create a common denominator and simplify.
See Also
1950 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |