Difference between revisions of "Schur's Inequality"
Mysmartmouth (talk | contribs) |
(links) |
||
Line 21: | Line 21: | ||
=== Generalized Form === | === Generalized Form === | ||
− | It has been shown by Valentin Vornicu that a more general form of Schur's Inequality exists. Consider <math>a,b,c,x,y,z \in \mathbb{R}</math>, where <math>{a \geq b \geq c}</math>, and either <math>x \geq y \geq z</math> or <math>z \geq y \geq x</math>. Let <math>k \in \mathbb{Z}^{+}</math>, and let <math>f:\mathbb{R} \rightarrow \mathbb{R}_{0}^{+}</math> be either convex or monotonic. Then, | + | It has been shown by [[Valentin Vornicu]] that a more general form of Schur's Inequality exists. Consider <math>a,b,c,x,y,z \in \mathbb{R}</math>, where <math>{a \geq b \geq c}</math>, and either <math>x \geq y \geq z</math> or <math>z \geq y \geq x</math>. Let <math>k \in \mathbb{Z}^{+}</math>, and let <math>f:\mathbb{R} \rightarrow \mathbb{R}_{0}^{+}</math> be either convex or monotonic. Then, |
<math>{f(x)(a-b)^k(a-c)^k+f(y)(b-a)^k(b-c)^k+f(z)(c-a)^k(c-b)^k \geq 0}</math> | <math>{f(x)(a-b)^k(a-c)^k+f(y)(b-a)^k(b-c)^k+f(z)(c-a)^k(c-b)^k \geq 0}</math> | ||
Line 33: | Line 33: | ||
* Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania. | * Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania. | ||
+ | |||
+ | ==See also== | ||
+ | * [[Olympiad Mathematics]] | ||
+ | * [[Inequalities]] | ||
+ | * [[Number Theory]] |
Revision as of 22:33, 24 June 2006
Schur's Inequality states that for all non-negative and :
The four equality cases occur when , or when two of are equal and the third is .
Common Cases
The case yields the well-known inequality:
When , an equivalent form is:
Proof
WLOG, let . Note that . Clearly, , and . Thus, . However, , and thus the proof is complete.
Generalized Form
It has been shown by Valentin Vornicu that a more general form of Schur's Inequality exists. Consider , where , and either or . Let , and let be either convex or monotonic. Then,
The standard form of Schur's is the case of this inequality where .
References
- Mildorf, Thomas; Olympiad Inequalities; January 20, 2006; <http://www.mit.edu/~tmildorf/Inequalities.pdf>
- Vornicu, Valentin; Olimpiada de Matematica... de la provocare la experienta; GIL Publishing House; Zalau, Romania.