Difference between revisions of "1950 AHSME Problems/Problem 2"

(Created page with "==Problem== Let <math> R=gS-4 </math>. When <math>S=8</math>, <math>R=16</math>. When <math>S=10</math>, <math>R</math> is equal to: <math> \textbf{(A)}\ 11\qquad\textbf{(B)}\ ...")
 
(Solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 +
 +
Our first procedure is to find the value of <math>g</math>. With the given variables' values, we can see that <math>8g-4=16</math> so <math>g=\frac{20}{8}=\frac{5}{2}</math>.
 +
 +
With that, we can replace <math>g</math> with <math>\frac{5}{2}</math>. When <math>S=10</math>, we can see that <math>10\times\frac{5}{2}-4=\frac{50}{2}-4=25-4=\boxed{\text{(D) 21}}</math>.
 +
 +
==See Also==
 +
 +
{{AHSME box|year=1950|num-b=1|num-a=3}}

Revision as of 11:54, 22 September 2011

Problem

Let $R=gS-4$. When $S=8$, $R=16$. When $S=10$, $R$ is equal to:

$\textbf{(A)}\ 11\qquad\textbf{(B)}\ 14\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 21\qquad\textbf{(E)}\ \text{None of these}$

Solution

Our first procedure is to find the value of $g$. With the given variables' values, we can see that $8g-4=16$ so $g=\frac{20}{8}=\frac{5}{2}$.

With that, we can replace $g$ with $\frac{5}{2}$. When $S=10$, we can see that $10\times\frac{5}{2}-4=\frac{50}{2}-4=25-4=\boxed{\text{(D) 21}}$.

See Also

1950 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions