Difference between revisions of "1996 AHSME Problems/Problem 29"

(Solution)
m (Solution)
Line 15: Line 15:
 
<math>3\cdot 10 \rightarrow p^2q^9</math>
 
<math>3\cdot 10 \rightarrow p^2q^9</math>
  
<math>5\cdot 6 \rightrarrow p^4q^5</math>
+
<math>5\cdot 6 \rightarrow p^4q^5</math>
  
 
<math>2\cdot 3\cdot 5 \rightarrow pq^2r^4</math>
 
<math>2\cdot 3\cdot 5 \rightarrow pq^2r^4</math>

Revision as of 23:52, 10 September 2011

Problem

If $n$ is a positive integer such that $2n$ has $28$ positive divisors and $3n$ has $30$ positive divisors, then how many positive divisors does $6n$ have?

$\text{(A)}\ 32\qquad\text{(B)}\ 34\qquad\text{(C)}\ 35\qquad\text{(D)}\ 36\qquad\text{(E)}\ 38$

Solution

Working with the second part of the problem first, we know that $3n$ has $30$ divisors. We try to find the various possible prime factorizations of $3n$ by splitting $30$ into various products of $1, 2$ or $3$ integers.

$30 \rightarrow p^{29}$

$2 \cdot 15 \rightarrow pq^{14}$

$3\cdot 10 \rightarrow p^2q^9$

$5\cdot 6 \rightarrow p^4q^5$

$2\cdot 3\cdot 5 \rightarrow pq^2r^4$

The variables $p, q, r$ are different prime factors, and one of them must be $3$. We now try to count the factors of $2n$, to see which prime factorization is correct and has $28$ factors.

In the first case, $p=3$ is the only possibility. This gives $2n = 2\cdot p^{28}$, which has $2\cdot {29}$ factors, which is way too many.

In the second case, $p=3$ gives $2n = 2q^{14}$. If $q=2$, then there are $16$ factors, while if $q\neq 2$, there are $2\cdot 15 = 30$ factors.

In the second case, $q=3$ gives $2n = 2p3^{13}$. If $p=2$, then there are $3\cdot 13$ factors, while if $p\neq 2$, there are $2\cdot 2 \cdot 13$ factors.

In the third case, $p=3$ gives $2n = 2\cdot 3\cdot q^9$. If $q=2$, then there are $11\cdot 2 = 22$ factors, while if $q \neq 2$, there are $2\cdot 2\cdot 10$ factors.

In the third case, $q=3$ gives $2n = 2\cdot p^2\cdot 3^8$. If $p=2$, then there are $4\cdot 9$ factors, while if $p \neq 2$, there are $2\cdot 3\cdot 9$ factors.

In the fourth case, $p=3$ gives $2n = 2\cdot 3^3\cdot q^5$. If $q=2$, then there are $7\cdot 4= 28$ factors. This is the factorization we want.

Thus, $3n = 3^4 \cdot 2^5$, which has $5\cdot 6 = 30$ factors, and $2n = 3^3 \cdot 2^6$, which has $4\cdot 7 = 28$ factors.

In this case, $6n = 3^4\cdot 2^6$, which has $5\cdot 7 = 35$ factors, and the answer is $\boxed{C}$

See also

1996 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions