Difference between revisions of "1998 AHSME Problems/Problem 18"

(Problem)
(Undo revision 41246 by Talkinaway (talk))
Line 2: Line 2:
 
A right circular cone of volume <math>A</math>, a right circular cylinder of volume <math>M</math>, and a sphere of volume <math>C</math> all have the same radius, and the common height of the cone and the cylinder is equal to the diameter of the sphere. Then
 
A right circular cone of volume <math>A</math>, a right circular cylinder of volume <math>M</math>, and a sphere of volume <math>C</math> all have the same radius, and the common height of the cone and the cylinder is equal to the diameter of the sphere. Then
  
<math> \textbf{(A)}\ A-M+C = 0\qquad\textbf{(B)}\ A+M = C\qquad\textbf{(C)}\ 2A = M+C </math>
+
<math> \mathrm{(A) \ } A-M+C = 0 \qquad \mathrm{(B) \ } A+M=C \qquad \mathrm{(C) \ } 2A = M+C \qquad \mathrm{(D) \ }A^2 - M^2 + C^2 = 0 \qquad \mathrm{(E) \ } 2A + 2M = 3C </math>
 
 
<math> \textbf{(D)}\ A^{2}-M^{2}+C^{2}= 0\qquad\textbf{(E)}\ 2A+2M = 3C </math>
 
 
 
 
 
==Solution==
 
 
 
Let <math>r</math> be the radius of the cone, cynlinder, and sphere.
 
 
 
Then <math>2r</math> will be the diameter of the sphere, and thus <math>2r</math> is also the height of the cone and cylinder.
 
 
 
<math>A_{cone} = \frac{1}{3}(\pi r^2)(2r) = \frac{2\pi}{3} r^3</math>
 
 
 
<math>M_{cyl} = (\pi r^2)(2r) = 2\pi r^3</math>
 
 
 
<math>C_{sph} = \frac{4}{3}\pi r^3</math>
 
 
 
Notice that <math>A + C = M</math>.  With a slight rearrangement, we get answer <math>\boxed{A}</math>.
 
  
 
== Solution ==
 
== Solution ==

Revision as of 23:34, 7 August 2011

Problem

A right circular cone of volume $A$, a right circular cylinder of volume $M$, and a sphere of volume $C$ all have the same radius, and the common height of the cone and the cylinder is equal to the diameter of the sphere. Then

$\mathrm{(A) \ } A-M+C = 0 \qquad \mathrm{(B) \ } A+M=C \qquad \mathrm{(C) \ } 2A = M+C \qquad \mathrm{(D) \ }A^2 - M^2 + C^2 = 0 \qquad \mathrm{(E) \ } 2A + 2M = 3C$

Solution

Using the radius $r$ the three volumes can be computed as follows:

$A = \frac 13 (\pi r^2) \cdot 2r$

$M = (\pi r^2) \cdot 2r$

$C = \frac 43 \pi r^3$

Clearly, $M = A+C \Longrightarrow$ the correct answer is $\mathrm{(A)}$.

The other linear combinations are obviously non-zero, and the left hand side of $\mathrm{(D)}$ evaluates to $(\pi r^3)^2 \cdot \left( \frac 49 - 4 + \frac {16}9 \right)$ which is negative. Thus $\mathrm{(A)}$ is indeed the only correct answer.

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions