Difference between revisions of "1991 APMO Problems/Problem 3"
(Created page with "== Problem == Let <math>a_1</math>, <math>a_2</math>, <math>\cdots</math>, <math>a_n</math>, <math>b_1</math>, <math>b_2</math>, <math>\cdots</math>, <math>b_n</math> be positive...") |
(→Solution) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | By Cauchy-Schwarz, <math>\left(\sum \dfrac{a_i^2}{a_i+b_i}\right)\left(\sum a_i+b_i\right)\geq \left(\sum a_i\right) ^2</math>, so <math>\sum \dfrac{a_i^2}{a_i+b_i}\geq \dfrac{\left(\sum a_i\right) ^2}{\sum (a_i+b_i)}=\dfrac{\sum a_i}{2} since < | + | By Cauchy-Schwarz, <math>\left(\sum \dfrac{a_i^2}{a_i+b_i}\right)\left(\sum a_i+b_i\right)\geq \left(\sum a_i\right) ^2</math>, so <math>\sum \dfrac{a_i^2}{a_i+b_i}\geq \dfrac{\left(\sum a_i\right) ^2}{\sum (a_i+b_i)}=\dfrac{\sum a_i}{2}</math> since <math>\sum a_i=\sum b_i</math>. |
Revision as of 16:40, 4 August 2011
Problem
Let , , , , , , , be positive real numbers such that . Show that
Solution
By Cauchy-Schwarz, , so since .