Difference between revisions of "1996 AHSME Problems/Problem 30"

Line 1: Line 1:
 +
==Problem==
 +
A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5.  The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5, has length equal to <math>m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers.  Find <math>m + n</math>.
 +
<math>\textbf{(A)}</math> 309 <math>\textbf{(B)}</math> 349 <math>\textbf{(C)}</math> 369 <math>\textbf{(D)}</math> 389 <math>\textbf{(E)}</math> 409
 +
==Solution==
 +
All angle measures are in degrees.
 +
Let the first trapezoid be <math>ABCD</math>, where <math>AB=BC=CD=3</math>.  Then the second trapezoid is <math>AFED</math>, where <math>AF=FE=ED=5</math>.  We look for <math>AD</math>.
  
 +
Since <math>ABCD</math> is an isosceles trapezoid, we know that <math>\angle BAD=\angle CDA</math> and, since <math>AB=BC</math>, if we drew <math>AC</math>, we would see <math>\angle BCA=\angle BAC</math>.  Anyway, <math>\widehat{AB}=\widehat{BC}=\widehat{CD}</math> (I couldn't find a better symbol; <math>\widehat{AB}</math> means arc AB).  Using similar reasoning, <math>\widehat{AF}=\widehat{FE}=\widehat{ED}</math>.
 +
 +
Let <math>\widehat{AB}=2\phi</math> and <math>\widehat{AF}=2\theta</math>.  Since <math>6\theta+6\phi=360</math> (add up the angles), <math>2\theta+2\phi=120</math> and thus <math>\widehat{AB}+\widehat{AF}=\widehat{BF}=120</math>.  Therefore, <math>\angle FAB=\frac{1}{2}\widehat{BDF}=\frac{1}{2}(240)=120</math>.  <math>\angle CDE=120</math> as well.
 +
 +
Now I focus on triangle <math>FAB</math>.  By the Law of Cosines, <math>BF^2=3^2+5^2-30\cos{120}=9+25+15=49</math>, so <math>BF=7</math>.  Seeing <math>\angle ABF=\theta</math> and <math>\angle AFB=\phi</math>, we can now use the Law of Sines to get:
 +
<cmath>\sin{\phi}=\frac{3\sqrt{3}}{14}\;\text{and}\;\sin{\theta}=\frac{5\sqrt{3}}{14}.</cmath>
 +
 +
Now I focus on triangle <math>AFD</math>.  <math>\angle AFD=3\phi</math> and <math>\angle ADF=\theta</math>, and we are given that <math>AF=5</math>, so
 +
<cmath>\frac{\sin{\theta}}{5}=\frac{\sin{3\phi}}{AD}.</cmath>
 +
We know <math>\sin{\theta}=\frac{5\sqrt{3}}{14}</math>, but we need to find <math>\sin{3\phi}</math>.  Using various identities, we see
 +
<cmath>\begin{align*}\sin{3\phi}&=\sin{(\phi+2\phi)}=\sin{\phi}\cos{2\phi}+\cos{\phi}\sin{2\phi}\\
 +
&=\sin{\phi}(1-2\sin^2{\phi})+2\sin{\phi}\cos^2{\phi}\\
 +
&=\sin{\phi}\left(1-2\sin^2{\phi}+2(1-\sin^2{\phi})\right)\\
 +
&=\sin{\phi}(3-4\sin^2{\phi})\\
 +
&=\frac{3\sqrt{3}}{14}\left(3-\frac{27}{49}\right)=\frac{3\sqrt{3}}{14}\left(\frac{120}{49}\right)=\frac{180\sqrt{3}}{343}
 +
\end{align*}</cmath>
 +
Returning to finding <math>AD</math>, we remember <cmath>\frac{\sin{\theta}}{5}=\frac{\sin{3\phi}}{AD}\;\text{so}\;AD=\frac{5\sin{3\phi}}{\sin{\theta}}.</cmath>
 +
Plugging in and solving, we see <math>AD=\frac{360}{49}</math>; <math>\boxed{49}</math>; <math>\boxed{\mathbb E}</math>.

Revision as of 13:34, 4 August 2011

Problem

A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5, has length equal to $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. $\textbf{(A)}$ 309 $\textbf{(B)}$ 349 $\textbf{(C)}$ 369 $\textbf{(D)}$ 389 $\textbf{(E)}$ 409

Solution

All angle measures are in degrees. Let the first trapezoid be $ABCD$, where $AB=BC=CD=3$. Then the second trapezoid is $AFED$, where $AF=FE=ED=5$. We look for $AD$.

Since $ABCD$ is an isosceles trapezoid, we know that $\angle BAD=\angle CDA$ and, since $AB=BC$, if we drew $AC$, we would see $\angle BCA=\angle BAC$. Anyway, $\widehat{AB}=\widehat{BC}=\widehat{CD}$ (I couldn't find a better symbol; $\widehat{AB}$ means arc AB). Using similar reasoning, $\widehat{AF}=\widehat{FE}=\widehat{ED}$.

Let $\widehat{AB}=2\phi$ and $\widehat{AF}=2\theta$. Since $6\theta+6\phi=360$ (add up the angles), $2\theta+2\phi=120$ and thus $\widehat{AB}+\widehat{AF}=\widehat{BF}=120$. Therefore, $\angle FAB=\frac{1}{2}\widehat{BDF}=\frac{1}{2}(240)=120$. $\angle CDE=120$ as well.

Now I focus on triangle $FAB$. By the Law of Cosines, $BF^2=3^2+5^2-30\cos{120}=9+25+15=49$, so $BF=7$. Seeing $\angle ABF=\theta$ and $\angle AFB=\phi$, we can now use the Law of Sines to get: \[\sin{\phi}=\frac{3\sqrt{3}}{14}\;\text{and}\;\sin{\theta}=\frac{5\sqrt{3}}{14}.\]

Now I focus on triangle $AFD$. $\angle AFD=3\phi$ and $\angle ADF=\theta$, and we are given that $AF=5$, so \[\frac{\sin{\theta}}{5}=\frac{\sin{3\phi}}{AD}.\] We know $\sin{\theta}=\frac{5\sqrt{3}}{14}$, but we need to find $\sin{3\phi}$. Using various identities, we see \begin{align*}\sin{3\phi}&=\sin{(\phi+2\phi)}=\sin{\phi}\cos{2\phi}+\cos{\phi}\sin{2\phi}\\ &=\sin{\phi}(1-2\sin^2{\phi})+2\sin{\phi}\cos^2{\phi}\\ &=\sin{\phi}\left(1-2\sin^2{\phi}+2(1-\sin^2{\phi})\right)\\ &=\sin{\phi}(3-4\sin^2{\phi})\\ &=\frac{3\sqrt{3}}{14}\left(3-\frac{27}{49}\right)=\frac{3\sqrt{3}}{14}\left(\frac{120}{49}\right)=\frac{180\sqrt{3}}{343} \end{align*} Returning to finding $AD$, we remember \[\frac{\sin{\theta}}{5}=\frac{\sin{3\phi}}{AD}\;\text{so}\;AD=\frac{5\sin{3\phi}}{\sin{\theta}}.\] Plugging in and solving, we see $AD=\frac{360}{49}$; $\boxed{49}$; $\boxed{\mathbb E}$.