Difference between revisions of "2011 IMO Problems/Problem 1"
(Answer to problem) |
|||
Line 1: | Line 1: | ||
Given any set <math>A = \{a_1, a_2, a_3, a_4\}</math> of four distinct positive integers, we denote the sum <math>a_1+a_2+a_3+a_4</math> by <math>s_A</math>. Let <math>n_A</math> denote the number of pairs <math>(i,j)</math> with <math>1 \leq i < j \leq 4</math> for which <math>a_i+a_j</math> divides <math>s_A</math>. Find all sets <math>A</math> of four distinct positive integers which achieve the largest possible value of <math>n_A</math>. | Given any set <math>A = \{a_1, a_2, a_3, a_4\}</math> of four distinct positive integers, we denote the sum <math>a_1+a_2+a_3+a_4</math> by <math>s_A</math>. Let <math>n_A</math> denote the number of pairs <math>(i,j)</math> with <math>1 \leq i < j \leq 4</math> for which <math>a_i+a_j</math> divides <math>s_A</math>. Find all sets <math>A</math> of four distinct positive integers which achieve the largest possible value of <math>n_A</math>. | ||
+ | |||
+ | |||
+ | Solution: | ||
+ | |||
+ | Firstly, if we order <math>a_1 \ge a_2 \ge a_3 \ge a_4</math>, we see <math>2(a_3 + a_4) \ge (a_1+a_2)+(a_3+a_4) = s_A \geq 0</math>, so <math>(a_3, a_4)</math> isn't a couple that satisfies the conditions of the problem. Also, <math>2(a_4 + a_2) = (a_4 + a_4) + (a_2 + a_2) \ge (a_4+a_3)+(a_2+a_1) = s_A \ge 0</math>, so again <math>(a_2, a_4)</math> isn't a good couple. We have in total 6 couples. So <math>n_A \leq 6-2=4</math>. | ||
+ | |||
+ | We now find all sets <math>A</math> with <math>n_A = 4</math>. If <math>(a,b)</math> and <math>(c,d)</math> are both good couples, and <math>A=\{a, b, c, d\}</math>, we have <math>a+b=c+d=s_A/2</math>. | ||
+ | So WLOG <math>A=\{a,b,a+x,b-x\}</math> with <math>x > 0</math> and <math>a < b, b-x, a+x</math>. It's easy to see <math>a=a_1</math> and since <math>(a_2, a_4),(a_3,a_4)</math> are bad, all couples containing <math>a</math> must be good. Obviously <math>(a,b)</math> and <math>(a+x,b-x)</math> are good (<math>s_A=2(a+b)</math>). So we have <math>2a+x | 2a+2b</math> and <math>a+b-x|2a+2b \Rightarrow a+b-x|2x</math>. | ||
+ | |||
+ | Using the second equation, we see that if <math>y=a+b</math>, <math>y-x|2x \Rightarrow yk_1-xk_1=2x \Rightarrow yk_1 = x(2+k_1) \Rightarrow y=x((2+k_1)/k_1)</math>, for some <math>k_1</math> a positive integer. | ||
+ | |||
+ | So now we use the first equation to get <math>2ak_2 + xk_2 = 2y = 2x(2+k_1)/k_1 \Rightarrow 2ak_2 = x(\frac{4+2k_1}{k_1}-k_2) \Rightarrow 2a=x(\frac{4+2k_1}{k_1k_2} - 1)</math>, for a natural <math>k_2</math>. | ||
+ | |||
+ | Finally, we obtain <math>k_1 | 4+2k-1 \Rightarrow k_1 | 4 \Rightarrow k_1=</math> 1, 2 or 4. We divide in cases: | ||
+ | |||
+ | CASE I: <math>k_1=1</math>. | ||
+ | So <math>y=3x</math> and <math>2a=x((\frac{6}{k_2}) -1)</math>. But <math>a < b-x \Rightarrow 2a < y-x=2x \Rightarrow (6/k_2) - 1 < 2 \Rightarrow k_2 > 2 \Rightarrow k_2 =</math>3, 4,5 or 6. <math>k_2=6</math> implies <math>a=0</math>, impossible. <math>a=x</math> when <math>k_2=3</math>. We easily see <math>b=3x=3x</math> and <math>A=\{x, 3x, 3x-x, 2x\}</math>, impossible since <math>3x-x=2x</math>. When <math>k_2=4</math>, <math>a=x/4=y/12</math>, and we get <math>\{11a, a, 5a, 7a\}</math>.Uf <math>k_2=5</math>, <math>a=x/5=y/15</math> and we get <math>\{a, 14a, 6a, 9a\}</math>. | ||
+ | |||
+ | CASE II and III:<math>k_1=</math>2, 4. Left to the reader. | ||
+ | |||
+ | ANSWER: <math>\{11a, a, 5a, 7a\}</math>,<math>\{a, 14a, 6a, 9a\}</math>, for any positive integer <math>a</math>. |
Revision as of 22:46, 22 August 2011
Given any set of four distinct positive integers, we denote the sum by . Let denote the number of pairs with for which divides . Find all sets of four distinct positive integers which achieve the largest possible value of .
Solution:
Firstly, if we order , we see , so isn't a couple that satisfies the conditions of the problem. Also, , so again isn't a good couple. We have in total 6 couples. So .
We now find all sets with . If and are both good couples, and , we have . So WLOG with and . It's easy to see and since are bad, all couples containing must be good. Obviously and are good (). So we have and .
Using the second equation, we see that if , , for some a positive integer.
So now we use the first equation to get , for a natural .
Finally, we obtain 1, 2 or 4. We divide in cases:
CASE I: . So and . But 3, 4,5 or 6. implies , impossible. when . We easily see and , impossible since . When , , and we get .Uf , and we get .
CASE II and III:2, 4. Left to the reader.
ANSWER: ,, for any positive integer .