Difference between revisions of "1997 USAMO Problems/Problem 6"

m
Line 1: Line 1:
 +
== Problem ==
 +
Suppose the sequence of nonnegative integers <math>a_1,a_2,...,a_{1997}</math> satisfies
  
 +
<math>a_i+a_j\lea_{i+j}\lea_i+a_j+1</math>
 +
 +
for all <math>i, j\ge1</math> with <math>i+j\le1997</math>. Show that there exists a real number <math>x</math> such that <math>a_n=\lfloor{nx}\rfloor</math> (the greatest integer <math>\lenx</math>) for all <math>1\len\le1997</math>.
 +
 +
== Solution ==

Revision as of 13:09, 5 July 2011

Problem

Suppose the sequence of nonnegative integers $a_1,a_2,...,a_{1997}$ satisfies

$a_i+a_j\lea_{i+j}\lea_i+a_j+1$ (Error compiling LaTeX. Unknown error_msg)

for all $i, j\ge1$ with $i+j\le1997$. Show that there exists a real number $x$ such that $a_n=\lfloor{nx}\rfloor$ (the greatest integer $\lenx$ (Error compiling LaTeX. Unknown error_msg)) for all $1\len\le1997$ (Error compiling LaTeX. Unknown error_msg).

Solution