Difference between revisions of "2005 AMC 12B Problems/Problem 21"

m (See also)
Line 9: Line 9:
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2005|ab=B|num-b=20|num-a=22}}
 
{{AMC12 box|year=2005|ab=B|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 09:42, 4 July 2013

Problem

A positive integer $n$ has $60$ divisors and $7n$ has $80$ divisors. What is the greatest integer $k$ such that $7^k$ divides $n$?

$\mathrm{(A)}\ {{{0}}} \qquad \mathrm{(B)}\ {{{1}}} \qquad \mathrm{(C)}\ {{{2}}} \qquad \mathrm{(D)}\ {{{3}}} \qquad \mathrm{(E)}\ {{{4}}}$

Solution

If $n$ has $60$ factors, then $n$ is a product of $2\times2\times3\times5$ powers of (not necessarily distinct) primes. When multiplied by $7$, the amount of factors of $n$ increased by $\frac{80}{60}=\frac{4}{3}$, so there are $4$ possible powers of $7$ in the factorization of $7n$, and $3$ possible powers of $7$ in the factorization of $n$, which would be $7^0$, $7^1$, and $7^2$. Therefore the highest power of $7$ that could divide $n$ is $2\Rightarrow\boxed{C}$.

See also

2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png