Difference between revisions of "1984 AHSME Problems"

(Created Page)
 
(created links)
Line 17: Line 17:
  
 
==Problem 3==
 
==Problem 3==
Let <math> n </math> be the smallest nonprime integer greater than <math> 1 </math> with no prime factor less than <math> 10 </math>. Then  
+
Let <math> n </math> be the smallest nonprime [[integer]] greater than <math> 1 </math> with no [[Prime factorization|prime factor]] less than <math> 10 </math>. Then  
  
 
<math> \mathrm{(A) \ }100<n\leq110 \qquad \mathrm{(B) \ }110<n\leq120 \qquad \mathrm{(C) \ } 120<n\leq130 \qquad \mathrm{(D) \ }130<n\leq140 \qquad \mathrm{(E) \ } 140<n\leq150 </math>
 
<math> \mathrm{(A) \ }100<n\leq110 \qquad \mathrm{(B) \ }110<n\leq120 \qquad \mathrm{(C) \ } 120<n\leq130 \qquad \mathrm{(D) \ }130<n\leq140 \qquad \mathrm{(E) \ } 140<n\leq150 </math>
  
 
[[1984 AHSME Problems/Problem 3|Solution]]
 
[[1984 AHSME Problems/Problem 3|Solution]]
 +
 
==Problem 4==
 
==Problem 4==
 
Points <math> B, C, F, E </math> are picked on a circle such that <math> BC||EF </math>. When <math> BC </math> is extended to the left, point <math> A </math> is marked outside the circle such that <math> AB=4 </math> and <math> BC=5 </math>. When <math> EF </math> is extended to the left, point <math> D </math> is marked outside the circle such that <math> DE=3 </math>. <math> AD </math> is perpendicular to both <math> AC </math> and <math> DF </math>. Find the length of <math> EF </math>.
 
Points <math> B, C, F, E </math> are picked on a circle such that <math> BC||EF </math>. When <math> BC </math> is extended to the left, point <math> A </math> is marked outside the circle such that <math> AB=4 </math> and <math> BC=5 </math>. When <math> EF </math> is extended to the left, point <math> D </math> is marked outside the circle such that <math> DE=3 </math>. <math> AD </math> is perpendicular to both <math> AC </math> and <math> DF </math>. Find the length of <math> EF </math>.

Revision as of 19:38, 16 June 2011

Problem 1

$\frac{1000^2}{252^2-248^2}$ equals

$\mathrm{(A) \  }62,500 \qquad \mathrm{(B) \  }1,000 \qquad \mathrm{(C) \  } 500\qquad \mathrm{(D) \  }250 \qquad \mathrm{(E) \  } \frac{1}{2}$

Solution

Problem 2

If $x, y$, and $y-\frac{1}{x}$ are not $0$, then

$\frac{x-\frac{1}{y}}{y-\frac{1}{x}}$ equals

$\mathrm{(A) \ }1 \qquad \mathrm{(B) \ }\frac{x}{y} \qquad \mathrm{(C) \ } \frac{y}{x}\qquad \mathrm{(D) \ }\frac{x}{y}-\frac{y}{x} \qquad \mathrm{(E) \ } xy-\frac{1}{xy}$

Solution

Problem 3

Let $n$ be the smallest nonprime integer greater than $1$ with no prime factor less than $10$. Then

$\mathrm{(A) \ }100<n\leq110 \qquad \mathrm{(B) \ }110<n\leq120 \qquad \mathrm{(C) \ } 120<n\leq130 \qquad \mathrm{(D) \ }130<n\leq140 \qquad \mathrm{(E) \ } 140<n\leq150$

Solution

Problem 4

Points $B, C, F, E$ are picked on a circle such that $BC||EF$. When $BC$ is extended to the left, point $A$ is marked outside the circle such that $AB=4$ and $BC=5$. When $EF$ is extended to the left, point $D$ is marked outside the circle such that $DE=3$. $AD$ is perpendicular to both $AC$ and $DF$. Find the length of $EF$.

Template:Incomplete

Solution

Problem 5

The largest integer $n$ for which $n^{200}<5^{300}$ is

$\mathrm{(A) \ }8 \qquad \mathrm{(B) \ }9 \qquad \mathrm{(C) \ } 10 \qquad \mathrm{(D) \ }11 \qquad \mathrm{(E) \ } 12$

Solution

Problem 6

In a certain school, there are $3$ times as many boys as girls and $9$ times as many girls as teachers. Using the letters $b, g, t$ to represent the number of boys, girls, and teachers, respectively, then the total number of boys, girls, and teachers can be represented by the expression

$\mathrm{(A) \ }31b \qquad \mathrm{(B) \ }\frac{37b}{27} \qquad \mathrm{(C) \ } 13g \qquad \mathrm{(D) \ }\frac{37g}{27} \qquad \mathrm{(E) \ } \frac{37t}{27}$

Solution

Problem 7

When Dave walks to school, he averages $90$ steps per minute, and each of his steps is $75$ cm long. It takes him $16$ minutes to get to school. His brother, Jack, going to the same school by the same route, averages $100$ steps per minute, but his steps are only $60$ cm long. How long does it take Jack to get to school?

$\mathrm{(A) \ }14 \frac{2}{9} \text{minutes} \qquad \mathrm{(B) \ }15 \text{minutes}\qquad \mathrm{(C) \ } 18 \text{minutes}\qquad \mathrm{(D) \ }20 \text{minutes} \qquad \mathrm{(E) \ } 22 \frac{2}{9} \text{minutes}$

Solution

Problem 8

Figure $ABCD$ is a trapezoid with $AB||DC$, $AB=5$, $BC=3\sqrt{2}$, $\angle BCD=45^\circ$, and $\angle CDA=60^\circ$. The length of $DC$ is

$\mathrm{(A) \ }7+\frac{2}{3}\sqrt{3} \qquad \mathrm{(B) \ }8 \qquad \mathrm{(C) \ } 9 \frac{1}{2} \qquad \mathrm{(D) \ }8+\sqrt{3} \qquad \mathrm{(E) \ } 8+3\sqrt{3}$

Solution

Problem 9

The number of digits in $4^{16}5^{25}$ (when written in the usual base $10$ form) is

$\mathrm{(A) \ }31 \qquad \mathrm{(B) \ }30 \qquad \mathrm{(C) \ } 29 \qquad \mathrm{(D) \ }28 \qquad \mathrm{(E) \ } 27$

Solution

Problem 10

Four complex numbers lie at the vertices of a square in the complex plane. Three of the numbers are $1+2i, -2+i$, and $-1-2i$. The fourth number is

$\mathrm{(A) \ }2+i \qquad \mathrm{(B) \ }2-i \qquad \mathrm{(C) \ } 1-2i \qquad \mathrm{(D) \ }-1+2i \qquad \mathrm{(E) \ } -2-i$

Solution

Problem 11

A calculator has a key that replaces the displayed entry with its square, and another key which replaces the displayed entry with its reciprocal. Let $y$ be the final result when one starts with a number $x\not=0$ and alternately squares and reciprocates $n$ times each. Assuming the calculator is completely accurate (e.g. no roundoff or overflow), then $y$ equals

$\mathrm{(A) \ }x^{((-2)^n)} \qquad \mathrm{(B) \ }x^{2n} \qquad \mathrm{(C) \ } x^{-2n} \qquad \mathrm{(D) \ }x^{-(2^n)} \qquad \mathrm{(E) \ } x^{((-1)^n2n)}$

Solution

Problem 12

If the sequence $\{a_n\}$ is defined by

$a_1=2$

$a_{n+1}=a_n+2n$

where $n\geq1$.

Then $a_{100}$ equals

$\mathrm{(A) \ }9900 \qquad \mathrm{(B) \ }9902 \qquad \mathrm{(C) \ } 9904 \qquad \mathrm{(D) \ }10100 \qquad \mathrm{(E) \ } 10102$

Solution

Problem 13

$\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ equals

$\mathrm{(A) \ }\sqrt{2}+\sqrt{3}-\sqrt{5} \qquad \mathrm{(B) \ }4-\sqrt{2}-\sqrt{3} \qquad \mathrm{(C) \ } \sqrt{2}+\sqrt{3}+\sqrt{6}-5 \qquad \mathrm{(D) \ }\frac{1}{2}(\sqrt{2}+\sqrt{5}-\sqrt{3}) \qquad \mathrm{(E) \ } \frac{1}{3}(\sqrt{3}+\sqrt{5}-\sqrt{2})$

Solution

Problem 14

The product of all real roots of the equation $x^{\log_{10}{x}}=10$ is

$\mathrm{(A) \ }1 \qquad \mathrm{(B) \ }-1 \qquad \mathrm{(C) \ } 10 \qquad \mathrm{(D) \ }10^{-1} \qquad \mathrm{(E) \ } \text{None of these}$

Solution

Problem 15

If $\sin{2x}\sin{3x}=\cos{2x}\cos{3x}$, then one value for $x$ is

$\mathrm{(A) \ }18^\circ \qquad \mathrm{(B) \ }30^\circ \qquad \mathrm{(C) \ } 36^\circ \qquad \mathrm{(D) \ }45^\circ \qquad \mathrm{(E) \ } 60^\circ$

Solution

Problem 16

The function $f(x)$ satisfies $f(2+x)=f(2-x)$ for all real numbers $x$. If the equation $f(x)=0$ has exactly four distinct real roots, then the sum of these roots is

$\mathrm{(A) \ }0 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \ } 4 \qquad \mathrm{(D) \ }6 \qquad \mathrm{(E) \ } 8$

Solution

Problem 17

A right triangle $ABC$ with hypotenuse $AB$ has side $AC=15$. Altitude $CH$ divides $AB$ into segments $AH$ and $HB$, with $HB=16$. The area of $\triangle ABC$ is:

$\mathrm{(A) \ }120 \qquad \mathrm{(B) \ }144 \qquad \mathrm{(C) \ } 150 \qquad \mathrm{(D) \ }216 \qquad \mathrm{(E) \ } 144\sqrt{5}$

Solution

Problem 18

A point $(x, y)$ is to be chosen in the coordinate plane so that it is equally distant from the x-axis, the y-axis, and the line $x+y=2$. Then $x$ is

$\mathrm{(A) \ }\sqrt{2}-1 \qquad \mathrm{(B) \ }\frac{1}{2} \qquad \mathrm{(C) \ } 2-\sqrt{2} \qquad \mathrm{(D) \ }1 \qquad \mathrm{(E) \ } \text{Not uniquely determined}$

Solution

Problem 19

A box contains $11$ balls, numbered $1, 2, 3, ... 11$. If $6$ balls are drawn simultaneously at random, what is the probability that the sum of the numbers on the balls drawn is odd?

$\mathrm{(A) \ }\frac{100}{231} \qquad \mathrm{(B) \ }\frac{115}{231} \qquad \mathrm{(C) \ } \frac{1}{2} \qquad \mathrm{(D) \ }\frac{118}{231} \qquad \mathrm{(E) \ } \frac{6}{11}$

Solution

Problem 20

The number of the distinct solutions to the equation

$|x-|2x+1||=3$ is

$\mathrm{(A) \ }0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 2 \qquad \mathrm{(D) \ }3 \qquad \mathrm{(E) \ } 4$

Solution

Problem 21

The number of triples $(a, b, c)$ of positive integers which satisfy the simultaneous equations

$ab+bc=44$

$ac+bc=23$

is

$\mathrm{(A) \ }0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 2 \qquad \mathrm{(D) \ }3 \qquad \mathrm{(E) \ } 4$

Solution

Problem 22

Let $a$ and $c$ be fixed positive numbers. For each real number $t$ let $(x_t, y_t)$ be the vertex of the parabola $y=ax^2+bx+c$. If the set of the vertices $(x_t, y_t)$ for all real numbers of $t$ is graphed on the plane, the graph is

$\mathrm{(A) \ } \text{a straight line} \qquad \mathrm{(B) \ } \text{a parabola} \qquad \mathrm{(C) \ } \text{part, but not all, of a parabola} \qquad \mathrm{(D) \ } \text{one branch of a hyperbola} \qquad$ $\mathrm{(E) \ } \text{None of these}$

Solution

Problem 23

$\frac{\sin{10^\circ}+\sin{20^\circ}}{\cos{10^\circ}+\cos{20^\circ}}$ equals

$\mathrm{(A) \ }\tan{10^\circ}+\tan{20^\circ} \qquad \mathrm{(B) \ }\tan{30^\circ} \qquad \mathrm{(C) \ } \frac{1}{2}(\tan{10^\circ}+\tan{20^\circ}) \qquad \mathrm{(D) \ }\tan{15^\circ} \qquad \mathrm{(E) \ } \frac{1}{4}\tan{60^\circ}$

Solution

Problem 24

If $a$ and $b$ are positive real numbers and each of the equations $x^2+ax+2b=0$ and $x^2+2bx+a=0$ has real roots, then the smallest possible value of $a+b$ is

$\mathrm{(A) \ }2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \ } 4 \qquad \mathrm{(D) \ }5 \qquad \mathrm{(E) \ } 6$

Solution

Problem 25

The total area of all the faces of a rectangular solid is $22\text{cm}^2$, and the total length of all its edges is $24\text{cm}$. Then the length in cm of any one of its interior diagonals is

$\mathrm{(A) \ }\sqrt{11} \qquad \mathrm{(B) \ }\sqrt{12} \qquad \mathrm{(C) \ } \sqrt{13}\qquad \mathrm{(D) \ }\sqrt{14} \qquad \mathrm{(E) \ } \text{Not uniquely determined}$

Solution

Problem 26

In the obtuse triangle $ABC$ with $\angle C>90^\circ$, $AM=MB$, $MD\perpBC$ (Error compiling LaTeX. Unknown error_msg), and $EC\perpBC$ (Error compiling LaTeX. Unknown error_msg) ($D$ is on $BC$, $E$ is on $AB$, and $M$ is on $EB$). If the area of $\triangle ABC$ is $24$, then the area of $\triangle BED$ is

$\mathrm{(A) \ }9 \qquad \mathrm{(B) \ }12 \qquad \mathrm{(C) \ } 15 \qquad \mathrm{(D) \ }18 \qquad \mathrm{(E) \ } \text{Not uniquely determined}$

Solution

Problem 27

In $\triangle ABC$, $D$ is on $AC$ and $F$ is on $BC$. Also, $AB\perpAC$ (Error compiling LaTeX. Unknown error_msg), $AF\perpBC$ (Error compiling LaTeX. Unknown error_msg), and $BD=DC=FC=1$. Find $AC$.

$\mathrm{(A) \ }\sqrt{2} \qquad \mathrm{(B) \ }\sqrt{3} \qquad \mathrm{(C) \ } \sqrt[3]{2} \qquad \mathrm{(D) \ }\sqrt[3]{3} \qquad \mathrm{(E) \ } \sqrt[4]{3}$

Solution

Problem 28

The number of distinct pairs of integers $(x, y)$ such that $0<x<y$ and $\sqrt{1984}=\sqrt{x}+\sqrt{y}$ is

$\mathrm{(A) \ }0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ }4 \qquad \mathrm{(E) \ } 7$

Solution

Problem 29

Find the largest value for $\frac{y}{x}$ for pairs of real numbers $(x, y)$ which satisfy $(x-3)^2+(y-3)^2=6$.

$\mathrm{(A) \ }3+2\sqrt{2} \qquad \mathrm{(B) \ }2+\sqrt{3} \qquad \mathrm{(C) \ } 3\sqrt{3} \qquad \mathrm{(D) \ }6 \qquad \mathrm{(E) \ } 6+2\sqrt{3}$

Solution

Problem 30

For any complex number $w=a+bi$, $|w|$ is defined to be the real number $\sqrt{a^2+b^2}$. If $w=\cos40^\circ+i\sin40^\circ$, then

$|w+2w^2+3w^3+...+9w^9|^{-1}$

equals

$\mathrm{(A) \ }\frac{1}{9}\sin40^\circ \qquad \mathrm{(B) \ }\frac{2}{9}\sin20^\circ \qquad \mathrm{(C) \ } \frac{1}{9}\cos40^\circ \qquad \mathrm{(D) \ }\frac{1}{18}\cos20^\circ \qquad \mathrm{(E) \ } \text{None of these}$

Solution

See Also