Difference between revisions of "1998 AHSME Problems/Problem 7"

(Created page with "== Problem 7 == If <math>N > 1</math>, then <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =</math> <math> \mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad ...")
 
(formatting fixes)
Line 1: Line 1:
== Problem 7 ==
+
== Problem ==
 
If <math>N > 1</math>, then <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =</math>
 
If <math>N > 1</math>, then <math>\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =</math>
  
 
<math> \mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad \mathrm{(C) \ } N^{\frac 1{3}} \qquad \mathrm{(D) \ } N^{\frac {13}{27}} \qquad \mathrm{(E) \ } N</math>
 
<math> \mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad \mathrm{(C) \ } N^{\frac 1{3}} \qquad \mathrm{(D) \ } N^{\frac {13}{27}} \qquad \mathrm{(E) \ } N</math>
  
[[1998 AHSME Problems/Problem 7|Solution]]
+
==Solution==
 +
{{solution}}
 +
==See Also==
 +
{{AHSME box|year=1998|num-b=6|num-a=8}}

Revision as of 14:36, 6 June 2011

Problem

If $N > 1$, then $\sqrt[3]{N\sqrt[3]{N\sqrt[3]{N}}} =$

$\mathrm{(A) \ } N^{\frac 1{27}} \qquad \mathrm{(B) \ } N^{\frac 1{9}} \qquad \mathrm{(C) \ } N^{\frac 1{3}} \qquad \mathrm{(D) \ } N^{\frac {13}{27}} \qquad \mathrm{(E) \ } N$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions