Difference between revisions of "2011 USAMO Problems/Problem 5"
(Created page with "==Problem== Let <math>P</math> be a given point inside quadrilateral <math>ABCD</math>. Points <math>Q_1</math> and <math>Q_2</math> are located within <math>ABCD</math> such th...") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
{{solution}} | {{solution}} | ||
+ | |||
+ | First note that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if the altitudes from <math>Q_1</math> and <math>Q_2</math> to <math>\overline{AB}</math> are the same, or <math>|Q_1B|\sin \angle ABQ_1 =|Q_2A|\sin \angle BAQ_2</math>. Similarly <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math> iff <math>|Q_1C|\sin \angle DCQ_1 =|Q_2D|\sin \angle CDQ_2</math>. | ||
+ | |||
+ | If we define <math>S =\dfrac{|Q_1B|\sin \angle ABQ_1}{|Q_2A|\sin \angle BAQ_2}\dfrac{|Q_2D|\sin \angle CDQ_2}{|Q_1C|\sin \angle DCQ_1}</math>, then we are done if we can show that S=1. | ||
==See also== | ==See also== |
Revision as of 15:13, 8 June 2011
Problem
Let be a given point inside quadrilateral . Points and are located within such that , , , . Prove that if and only if .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
First note that if and only if the altitudes from and to are the same, or . Similarly iff .
If we define , then we are done if we can show that S=1.
See also
2011 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |