Difference between revisions of "1999 AHSME Problems/Problem 11"

(Moved solution tag)
(Solution)
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
 
+
The locker labeling requires <math> \frac{137.94}{0.02}=6897</math> digits.  Lockers <math> 1</math> through <math> 9</math> require <math> 9</math> digits total, lockers <math> 10</math> through <math> 99</math> require <math> 2 \times 90=180</math> digits, and lockers <math> 100</math> through <math> 999</math> require <math> 3 \times 900=2700</math> digits.  Thus, the remaining lockers require <math> 6897-2700-180-9=4008</math> digits, so there must be <math> \frac{4008}{4}=1002</math> more lockers, because they each use <math> 4</math> digits.  Thus, there are <math> 1002+999=2001</math> student lockers, or answer choice <math> \boxed{\textbf{(A)}}</math>.
{{solution}}
 
  
 
==See Also==
 
==See Also==
  
 
{{AHSME box|year=1999|num-b=10|num-a=12}}
 
{{AHSME box|year=1999|num-b=10|num-a=12}}

Revision as of 12:24, 4 June 2011

Problem

The student locker numbers at Olympic High are numbered consecutively beginning with locker number $1$. The plastic digits used to number the lockers cost two cents apiece. Thus, it costs two cents to label locker number $9$ and four centers to label locker number $10$. If it costs $137.94 to label all the lockers, how many lockers are there at the school?

$\textbf{(A)}\ 2001 \qquad  \textbf{(B)}\ 2010 \qquad  \textbf{(C)}\ 2100 \qquad  \textbf{(D)}\ 2726 \qquad  \textbf{(E)}\ 6897$

Solution

The locker labeling requires $\frac{137.94}{0.02}=6897$ digits. Lockers $1$ through $9$ require $9$ digits total, lockers $10$ through $99$ require $2 \times 90=180$ digits, and lockers $100$ through $999$ require $3 \times 900=2700$ digits. Thus, the remaining lockers require $6897-2700-180-9=4008$ digits, so there must be $\frac{4008}{4}=1002$ more lockers, because they each use $4$ digits. Thus, there are $1002+999=2001$ student lockers, or answer choice $\boxed{\textbf{(A)}}$.

See Also

1999 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions