Difference between revisions of "2010 AMC 12B Problems/Problem 23"
(→Solution) |
|||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
<math> P(x) = (x - a)^2 - b, Q(x) = (x - c)^2 - d</math>. Notice that <math> P(x)</math> has roots <math> a\pm \sqrt {b}</math>, so that the roots of <math> P(Q(x))</math> are the roots of <math> Q(x) = a + \sqrt {b}, a - \sqrt {b}</math>. For each individual equation, the sum of the roots will be <math> 2c</math> (symmetry or Vieta's). Thus, we have <math> 4c = - 23 - 21 - 17 - 15</math>, or <math> c = - 19</math>. Doing something similar for <math> Q(P(x))</math> gives us <math> a = - 54</math>. | <math> P(x) = (x - a)^2 - b, Q(x) = (x - c)^2 - d</math>. Notice that <math> P(x)</math> has roots <math> a\pm \sqrt {b}</math>, so that the roots of <math> P(Q(x))</math> are the roots of <math> Q(x) = a + \sqrt {b}, a - \sqrt {b}</math>. For each individual equation, the sum of the roots will be <math> 2c</math> (symmetry or Vieta's). Thus, we have <math> 4c = - 23 - 21 - 17 - 15</math>, or <math> c = - 19</math>. Doing something similar for <math> Q(P(x))</math> gives us <math> a = - 54</math>. | ||
− | We now have <math> P(x) = (x + | + | We now have <math> P(x) = (x + 54)^2 - b, Q(x) = (x + 19)^2 - d</math>. Since <math> Q</math> is monic, the roots of <math> Q(x) = a + \sqrt {b}</math> are "farther" from the axis of symmetry than the roots of <math> Q(x) = a - \sqrt {b}</math>. Thus, we have <math> Q( - 23) = - 54 + \sqrt {b}, Q( -21) =- 54 - \sqrt {b}</math>, or <math> 16 - d = - 54 + \sqrt {b}, 4 - d = - 54 - \sqrt {b}</math>. Adding these gives us <math> 20 - 2d = - 108</math>, or <math> d = 64</math>. Plugging this into <math> 16 - d = - 54 + \sqrt {b}</math>, we get <math> b = 36</math>. |
The minimum value of <math> P(x)</math> is <math> - b</math>, and the minimum value of <math> Q(x)</math> is <math> - d</math>. Thus, our answer is <math> - (b + d) = - 100</math>, or answer <math> \boxed{\textbf{(A)}}</math>. | The minimum value of <math> P(x)</math> is <math> - b</math>, and the minimum value of <math> Q(x)</math> is <math> - d</math>. Thus, our answer is <math> - (b + d) = - 100</math>, or answer <math> \boxed{\textbf{(A)}}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC12 box|ab=B|year=2010|num-a=24|num-b=22}} | {{AMC12 box|ab=B|year=2010|num-a=24|num-b=22}} |
Revision as of 21:36, 6 February 2012
Problem 23
Monic quadratic polynomial and have the property that has zeros at and , and has zeros at and . What is the sum of the minimum values of and ?
Solution
. Notice that has roots , so that the roots of are the roots of . For each individual equation, the sum of the roots will be (symmetry or Vieta's). Thus, we have , or . Doing something similar for gives us . We now have . Since is monic, the roots of are "farther" from the axis of symmetry than the roots of . Thus, we have , or . Adding these gives us , or . Plugging this into , we get . The minimum value of is , and the minimum value of is . Thus, our answer is , or answer .
See Also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |