Difference between revisions of "2006 AMC 10A Problems/Problem 8"
(→Solution) |
Math Kirby (talk | contribs) m (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A [[parabola]] with equation <math> | + | A [[parabola]] with equation <math>y=x^2+bx+c</math> passes through the points <math> (2,3) </math> and <math> (4,3) </math>. What is <math>c</math>? |
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math> | <math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math> | ||
+ | |||
== Solution == | == Solution == | ||
Revision as of 21:57, 5 September 2011
Problem
A parabola with equation passes through the points and . What is ?
Solution
Solution 1
Substitute the points (2,3) and (4,3) into the given equation for (x,y).
Then we get a system of two equations:
Subtracting the first equation from the second we have:
Then using in the first equation:
is the answer.
Solution 2
Alternatively, notice that since the equation is that of a monic parabola, the vertex is likely . Thus, the form of the equation of the parabola is . Expanding this out, we find that .
Solution 3
The points given have the same -value, so the vertex lies on the line .
The -coordinate of the vertex is also equal to , so set this equal to and solve for , given that :
Now the equation is of the form . Now plug in the point and solve for :
See also
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |