Difference between revisions of "2006 AMC 10A Problems/Problem 8"

(Solution)
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A [[parabola]] with equation <math>\displaystyle y=x^2+bx+c</math> passes through the points (2,3) and (4,3).  What is <math>\displaystyle c</math>?
+
A [[parabola]] with equation <math>y=x^2+bx+c</math> passes through the points <math> (2,3) </math> and <math> (4,3) </math>.  What is <math>c</math>?
  
 
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math>
 
<math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11 </math>
 +
 
== Solution ==
 
== Solution ==
  

Revision as of 21:57, 5 September 2011

Problem

A parabola with equation $y=x^2+bx+c$ passes through the points $(2,3)$ and $(4,3)$. What is $c$?

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 11$

Solution

Solution 1

Substitute the points (2,3) and (4,3) into the given equation for (x,y).

Then we get a system of two equations:

$3=4+2b+c$

$3=16+4b+c$

Subtracting the first equation from the second we have:

$0=12+2b$

$b=-6$

Then using $b=-6$ in the first equation:

$0=1+-12+c$

$c=11 \Longrightarrow \mathrm{(E)}$ is the answer.

Solution 2

Alternatively, notice that since the equation is that of a monic parabola, the vertex is likely $(3,2)$. Thus, the form of the equation of the parabola is $y - 2 = (x - 3)^2$. Expanding this out, we find that $c = 11$.

Solution 3

The points given have the same $y$-value, so the vertex lies on the line $x=\frac{2+4}{2}=3$.

The $x$-coordinate of the vertex is also equal to $\frac{-b}{2a}$, so set this equal to $3$ and solve for $b$, given that $a=1$:

$x=\frac{-b}{2a}$

$3=\frac{-b}{2}$

$6=-b$

$b=-6$

Now the equation is of the form $y=x^2-6x+c$. Now plug in the point $(2,3)$ and solve for $c$:

$y=x^2-6x+c$

$3=2^2-6(2)+c$

$3=4-12+c$

$3=-8+c$

$\boxed{c=11 \text{(E)}}$

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions