Difference between revisions of "2007 AMC 10B Problems/Problem 19"

(Created page with '==Problem 19== The wheel shown is spun twice, and the randomly determined numbers opposite the pointer are recorded. The first number is divided by <math>4,</math> and the secon…')
 
Line 1: Line 1:
==Problem 19==
+
==Problem==
  
 
The wheel shown is spun twice, and the randomly determined numbers opposite the pointer are recorded. The first number is divided by <math>4,</math> and the second number is divided by <math>5.</math> The first remainder designates a column, and the second remainder designates a row on the checkerboard shown. What is the probability that the pair of numbers designates a shaded square?
 
The wheel shown is spun twice, and the randomly determined numbers opposite the pointer are recorded. The first number is divided by <math>4,</math> and the second number is divided by <math>5.</math> The first remainder designates a column, and the second remainder designates a row on the checkerboard shown. What is the probability that the pair of numbers designates a shaded square?
Line 60: Line 60:
 
Add those two together
 
Add those two together
 
<cmath> \frac{1}{3} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \boxed{\textbf{(C)} \frac{1}{2}}</cmath>
 
<cmath> \frac{1}{3} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \boxed{\textbf{(C)} \frac{1}{2}}</cmath>
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2007|ab=B|num-b=18|num-a=20}}

Revision as of 16:10, 4 June 2011

Problem

The wheel shown is spun twice, and the randomly determined numbers opposite the pointer are recorded. The first number is divided by $4,$ and the second number is divided by $5.$ The first remainder designates a column, and the second remainder designates a row on the checkerboard shown. What is the probability that the pair of numbers designates a shaded square?

[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  real r=2; pair O=(0,0); pair A=(0,2), A1=(0,-2); draw(A--A1); pair B=(sqrt(3),1), B1=(-sqrt(3),-1); draw(B--B1); pair C=(sqrt(3),-1), C1=(-sqrt(3),1); draw(C--C1); path circleO=Circle(O,r); draw(circleO); pair[] ps={O}; dot(ps); label("$6$",(-0.6,1)); label("$1$",(0.6,1)); label("$2$",(0.6,-1)); label("$9$",(-0.6,-1)); label("$7$",(1.2,0)); label("$3$",(-1.2,0));  label("$pointer$",(-4,0)); draw((-5.5,0.5)--(-5.5,-0.5)--(-3,-0.5)--(-2.5,0)--(-3,0.5)--cycle);  fill((4,0)--(4,1)--(5,1)--(5,0)--cycle,gray); fill((6,2)--(6,1)--(5,1)--(5,2)--cycle,gray); fill((6,0)--(6,-1)--(5,-1)--(5,0)--cycle,gray); fill((6,0)--(6,1)--(7,1)--(7,0)--cycle,gray); fill((4,-1)--(5,-1)--(5,-2)--(4,-2)--cycle,gray); fill((6,-1)--(7,-1)--(7,-2)--(6,-2)--cycle,gray); draw((4,2)--(7,2)--(7,-2)--(4,-2)--cycle); draw((4,1)--(7,1)); draw((4,0)--(7,0)); draw((4,-1)--(7,-1)); draw((5,2)--(5,-2)); draw((6,2)--(6,-2)); label("$1$",midpoint((4,-1)--(4,-2)),W); label("$2$",midpoint((4,0)--(4,-1)),W); label("$3$",midpoint((4,1)--(4,0)),W); label("$4$",midpoint((4,2)--(4,1)),W); label("$1$",midpoint((4,-2)--(5,-2)),S); label("$2$",midpoint((5,-2)--(6,-2)),S); label("$3$",midpoint((7,-2)--(6,-2)),S); [/asy]

$\textbf{(A) } \frac{1}{3} \qquad\textbf{(B) } \frac{4}{9} \qquad\textbf{(C) } \frac{1}{2} \qquad\textbf{(D) } \frac{5}{9} \qquad\textbf{(E) } \frac{2}{3}$

Solution

When dividing each number on the wheel by $4,$ the remainders are $1, 1, 2, 2, 3,$ and $3.$ Each column on the checkerboard is equally likely to be chosen.

When dividing each number on the wheel by $5,$ the remainders are $1, 1, 2, 2, 3,$ and $4.$

The probability that a shaded square in the $1$st or $3$rd row of the $1$st or $3$rd column is \[\frac{2}{3} \times \frac{3}{6} = \frac{1}{3}\]

The probability that a shaded square in the $2$nd or $4$th row of the $2$nd column is \[\frac{1}{3} \times \frac{3}{6} = \frac{1}{6}\]

Add those two together \[\frac{1}{3} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \boxed{\textbf{(C)} \frac{1}{2}}\]

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions