Difference between revisions of "2002 AMC 10B Problems"
(→Problem 19) |
(→Problem 20) |
||
Line 180: | Line 180: | ||
== Problem 20 == | == Problem 20 == | ||
+ | |||
+ | Let <math>a, b,</math> and <math>c</math> be real numbers such that <math>a-7b+8c=4</math> and <math>8a+4b-c=7.</math> Then <math>a^2-b^2+c^2</math> is | ||
+ | |||
+ | <math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 7\qquad \mathrm{(E) \ } 8 </math> | ||
[[2002 AMC 10B Problems/Problem 20|Solution]] | [[2002 AMC 10B Problems/Problem 20|Solution]] |
Revision as of 14:04, 27 May 2011
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
The ratio is:
Problem 2
For the nonzero numbers and define Find .
Problem 3
The arithmetic mean of the nine numbers in the set is a -digit number , all of whose digits are distinct. The number does not contain the digit
Problem 4
What is the value of
when ?
Problem 5
Circles of radius and are externally tangent and are circumscribed by a third circle, as shown in the figure. Find the area of the shaded region.
Problem 6
For how many positive integers is a prime number?
Problem 7
Let be a positive integer such that is an integer. Which of the following statements is not true?
Problem 8
Suppose July of year has five Mondays. Which of the following must occurs five times in the August of year ? (Note: Both months have days.)
Problem 9
Using the letters , , , , and , we can form five-letter "words". If these "words" are arranged in alphabetical order, then the "word" occupies position
Problem 10
Suppose that and are nonzero real numbers, and that the equation has positive solutions and . Then the pair is
Problem 11
The product of three consecutive positive integers is times their sum. What is the sum of the squares?
Problem 12
For which of the following values of does the equation have no solution for ?
Problem 13
Find the value(s) of such that is true for all values of .
Problem 14
The number is the square of a positive integer . In decimal representation, the sum of the digits of is
Problem 15
The positive integers , , , and are all prime numbers. The sum of these four primes is
Problem 16
For how many integers is the square of an integer?
Problem 17
A regular octagon has sides of length two. Find the area of .
Problem 18
Four distinct circles are drawn in a plane. What is the maximum number of points where at least two of the circles intersect?
Problem 19
Suppose that is an arithmetic sequence with What is the value of
Problem 20
Let and be real numbers such that and Then is
Problem 21
Problem 22
Let be a right-triangle with . Let and be the midpoints of the legs and , respectively. Given and , find .
Problem 23
Problem 24
Problem 25
When is appended to a list of integers, the mean is increased by . When is appended to the enlarged list, the mean of the enlarged list is decreased by . How many integers were in the original list?