Difference between revisions of "2010 AIME I Problems/Problem 14"
(→Solution 3) |
m (made the solution tags look pretty) |
||
Line 1: | Line 1: | ||
+ | __TOC__ | ||
== Problem == | == Problem == | ||
For each positive integer n, let <math>f(n) = \sum_{k = 1}^{100} \lfloor \log_{10} (kn) \rfloor</math>. Find the largest value of n for which <math>f(n) \le 300</math>. | For each positive integer n, let <math>f(n) = \sum_{k = 1}^{100} \lfloor \log_{10} (kn) \rfloor</math>. Find the largest value of n for which <math>f(n) \le 300</math>. | ||
Line 4: | Line 5: | ||
'''Note:''' <math>\lfloor x \rfloor</math> is the greatest integer less than or equal to <math>x</math>. | '''Note:''' <math>\lfloor x \rfloor</math> is the greatest integer less than or equal to <math>x</math>. | ||
− | == Solution 1 == | + | ==Solution== |
+ | === Solution 1 === | ||
Observe that <math>f</math> is strictly increasing in <math>n</math>. We realize that we need <math>100</math> terms to add up to around <math>300</math>, so we need some sequence of <math>2</math>s, <math>3</math>s, and then <math>4</math>s. | Observe that <math>f</math> is strictly increasing in <math>n</math>. We realize that we need <math>100</math> terms to add up to around <math>300</math>, so we need some sequence of <math>2</math>s, <math>3</math>s, and then <math>4</math>s. | ||
It follows that <math>n \approx 100</math>. Manually checking shows that <math>f(109) = 300</math> and <math>f(110) > 300</math>. Thus, our answer is <math>\boxed{109}</math>. | It follows that <math>n \approx 100</math>. Manually checking shows that <math>f(109) = 300</math> and <math>f(110) > 300</math>. Thus, our answer is <math>\boxed{109}</math>. | ||
− | == Solution 2 == | + | === Solution 2 === |
Because we want the value for which <math>f(n)=300</math>, the average value of the 100 terms of the sequence should be around <math>3</math>. For the value of <math>\lfloor \log_{10} (kn) \rfloor</math> to be <math>3</math>, <math>1000 \le kn < 10000</math>. We want kn to be around the middle of that range, and for k to be in the middle of 0 and 100, let <math>k=50</math>, so <math>50n=\frac{10000+1000}{2}=\frac{11000}{2}=5500</math>, and <math>n = 110</math>. <math>f(110) = 301</math>, so we want to lower <math>n</math>. Testing <math>109</math> yields <math>300</math>, so our answer is still <math>\boxed{109}</math>. | Because we want the value for which <math>f(n)=300</math>, the average value of the 100 terms of the sequence should be around <math>3</math>. For the value of <math>\lfloor \log_{10} (kn) \rfloor</math> to be <math>3</math>, <math>1000 \le kn < 10000</math>. We want kn to be around the middle of that range, and for k to be in the middle of 0 and 100, let <math>k=50</math>, so <math>50n=\frac{10000+1000}{2}=\frac{11000}{2}=5500</math>, and <math>n = 110</math>. <math>f(110) = 301</math>, so we want to lower <math>n</math>. Testing <math>109</math> yields <math>300</math>, so our answer is still <math>\boxed{109}</math>. | ||
− | == Solution 3 == | + | === Solution 3 === |
For any <math>n</math> where the sum is close to <math>300</math>, all the terms in the sum must be equal to <math>2</math>, <math>3</math> or <math>4</math>. Let <math>M</math> be the number of terms less than or equal to <math>3</math> and <math>N</math> be the number of terms equal to <math>2</math> (also counted in <math>M</math>). With this definition of <math>M</math> and <math>N</math> the total will be <math>400 - M - N \le 300</math>, from which <math>M + N \ge 100</math>. Now <math>M+1</math> is the smallest integer <math>k</math> for which <math>\log_{10}(kn) \ge 4</math> or <math>kn \ge 10000</math>, thus <cmath>M = \left\lfloor\frac{9999}{n}\right\rfloor.</cmath> Similarly, <cmath>N = \left\lfloor\frac{999}{n}\right\rfloor = \left\lfloor\frac{M}{10}\right\rfloor.</cmath> | For any <math>n</math> where the sum is close to <math>300</math>, all the terms in the sum must be equal to <math>2</math>, <math>3</math> or <math>4</math>. Let <math>M</math> be the number of terms less than or equal to <math>3</math> and <math>N</math> be the number of terms equal to <math>2</math> (also counted in <math>M</math>). With this definition of <math>M</math> and <math>N</math> the total will be <math>400 - M - N \le 300</math>, from which <math>M + N \ge 100</math>. Now <math>M+1</math> is the smallest integer <math>k</math> for which <math>\log_{10}(kn) \ge 4</math> or <math>kn \ge 10000</math>, thus <cmath>M = \left\lfloor\frac{9999}{n}\right\rfloor.</cmath> Similarly, <cmath>N = \left\lfloor\frac{999}{n}\right\rfloor = \left\lfloor\frac{M}{10}\right\rfloor.</cmath> | ||
Line 18: | Line 20: | ||
Therefore, <cmath>M + \left\lfloor \frac{M}{10} \right\rfloor \ge 100 \implies M \ge \left\lceil\frac{1000}{11}\right\rceil = 91 \implies n \le \left\lfloor\frac{9999}{91}\right\rfloor = 109.</cmath> Since we want the largest possible <math>n</math>, the answer is <math>\boxed{109}</math>. | Therefore, <cmath>M + \left\lfloor \frac{M}{10} \right\rfloor \ge 100 \implies M \ge \left\lceil\frac{1000}{11}\right\rceil = 91 \implies n \le \left\lfloor\frac{9999}{91}\right\rfloor = 109.</cmath> Since we want the largest possible <math>n</math>, the answer is <math>\boxed{109}</math>. | ||
− | == See | + | == See Also == |
{{AIME box|year=2010|num-b=13|num-a=15|n=I}} | {{AIME box|year=2010|num-b=13|num-a=15|n=I}} | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] |
Revision as of 15:57, 12 April 2012
Problem
For each positive integer n, let . Find the largest value of n for which .
Note: is the greatest integer less than or equal to .
Solution
Solution 1
Observe that is strictly increasing in . We realize that we need terms to add up to around , so we need some sequence of s, s, and then s.
It follows that . Manually checking shows that and . Thus, our answer is .
Solution 2
Because we want the value for which , the average value of the 100 terms of the sequence should be around . For the value of to be , . We want kn to be around the middle of that range, and for k to be in the middle of 0 and 100, let , so , and . , so we want to lower . Testing yields , so our answer is still .
Solution 3
For any where the sum is close to , all the terms in the sum must be equal to , or . Let be the number of terms less than or equal to and be the number of terms equal to (also counted in ). With this definition of and the total will be , from which . Now is the smallest integer for which or , thus Similarly,
Therefore, Since we want the largest possible , the answer is .
See Also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |