Difference between revisions of "2006 AMC 10B Problems/Problem 24"
m (→See Also) |
m (<asy>s by dragon96) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
[[Circle]]s with centers <math>O</math> and <math>P</math> have radii <math>2</math> and <math>4</math>, respectively, and are externally tangent. Points <math>A</math> and <math>B</math> on the circle with center <math>O</math> and points <math>C</math> and <math>D</math> on the circle with center <math>P</math> are such that <math>AD</math> and <math>BC</math> are common external tangents to the circles. What is the area of the [[concave]] [[hexagon]] <math>AOBCPD</math>? | [[Circle]]s with centers <math>O</math> and <math>P</math> have radii <math>2</math> and <math>4</math>, respectively, and are externally tangent. Points <math>A</math> and <math>B</math> on the circle with center <math>O</math> and points <math>C</math> and <math>D</math> on the circle with center <math>P</math> are such that <math>AD</math> and <math>BC</math> are common external tangents to the circles. What is the area of the [[concave]] [[hexagon]] <math>AOBCPD</math>? | ||
− | + | <!-- [[Image:2006amc10b24.gif]] --> | |
− | [[Image:2006amc10b24.gif]] | + | <asy>size(200);defaultpen(linewidth(0.8)); |
+ | pair X=(-6,0), O=origin, P=(6,0), B=tangent(X, O, 2, 1), A=tangent(X, O, 2, 2), C=tangent(X, P, 4, 1), D=tangent(X, P, 4, 2); | ||
+ | pair top=X+15*dir(X--A), bottom=X+15*dir(X--B); | ||
+ | draw(Circle(O, 2)^^Circle(P, 4)); | ||
+ | draw(bottom--X--top); | ||
+ | draw(A--O--B^^O--P^^D--P--C); | ||
+ | pair point=X; | ||
+ | label("$2$", midpoint(O--A), dir(point--midpoint(O--A))); | ||
+ | label("$4$", midpoint(P--D), dir(point--midpoint(P--D))); | ||
+ | label("$O$", O, SE); | ||
+ | label("$P$", P, dir(point--P)); | ||
+ | pair point=O; | ||
+ | label("$A$", A, dir(point--A)); | ||
+ | label("$B$", B, dir(point--B)); | ||
+ | pair point=P; | ||
+ | label("$C$", C, dir(point--C)); | ||
+ | label("$D$", D, dir(point--D)); | ||
+ | fill((-3,7)--(-3,-7)--(-7,-7)--(-7,7)--cycle, white);</asy> | ||
<math> \mathrm{(A) \ } 18\sqrt{3}\qquad \mathrm{(B) \ } 24\sqrt{2}\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 24\sqrt{3}\qquad \mathrm{(E) \ } 32\sqrt{2} </math> | <math> \mathrm{(A) \ } 18\sqrt{3}\qquad \mathrm{(B) \ } 24\sqrt{2}\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 24\sqrt{3}\qquad \mathrm{(E) \ } 32\sqrt{2} </math> | ||
Line 11: | Line 28: | ||
Construct a perpendicular to <math>DP</math> that goes through point <math>O</math>. Label the point of [[intersection]] <math>X</math>. | Construct a perpendicular to <math>DP</math> that goes through point <math>O</math>. Label the point of [[intersection]] <math>X</math>. | ||
− | Clearly <math>OADX</math> is a [[rectangle]] | + | Clearly <math>OADX</math> is a [[rectangle]], so <math>DX=2</math> and <math>PX=2</math>. By the [[Pythagorean Theorem]], <math>OX = \sqrt{6^2 - 2^2} = 4\sqrt{2}</math>. |
− | |||
− | |||
− | |||
− | By the [[Pythagorean Theorem]] | ||
− | <math>OX = \sqrt{6^2 - 2^2} = 4 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Using similar steps, the area of quadrilateral <math>OBCP</math> is also <math>12\sqrt{2}</math> | + | The area of <math>OADX</math> is <math>2\cdot4\sqrt{2}=8\sqrt{2}</math>. The area of <math>OXP</math> is <math>\frac{1}{2}\cdot2\cdot4\sqrt{2}=4\sqrt{2}</math>, so the area of quadrilateral <math>OADP</math> is <math>8\sqrt{2}+4\sqrt{2}=12\sqrt{2}</math>. Using similar steps, the area of quadrilateral <math>OBCP</math> is also <math>12\sqrt{2}</math>. Therefore, the area of hexagon <math>AOBCPD</math> is <math>2\cdot12\sqrt{2}= 24\sqrt{2} \Longrightarrow \boxed{\mathrm{(B)}}</math>. |
− | |||
== See also == | == See also == | ||
{{AMC10 box|year=2006|ab=B|num-b=23|num-a=25}} | {{AMC10 box|year=2006|ab=B|num-b=23|num-a=25}} | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
+ | [[Category:Area Problems]] | ||
+ | [[Category:Circle Problems]] |
Revision as of 23:30, 20 August 2011
Problem
Circles with centers and have radii and , respectively, and are externally tangent. Points and on the circle with center and points and on the circle with center are such that and are common external tangents to the circles. What is the area of the concave hexagon ?
Solution
Since a tangent line is perpendicular to the radius containing the point of tangency, .
Construct a perpendicular to that goes through point . Label the point of intersection .
Clearly is a rectangle, so and . By the Pythagorean Theorem, .
The area of is . The area of is , so the area of quadrilateral is . Using similar steps, the area of quadrilateral is also . Therefore, the area of hexagon is .
See also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |