Difference between revisions of "2011 AMC 10A Problems/Problem 17"

m (Solution)
m (See Also)
Line 18: Line 18:
  
  
{{AMC10 box|year=2011|ab=A|num-b=17|num-a=18}}
+
{{AMC10 box|year=2011|ab=A|num-b=16|num-a=18}}

Revision as of 09:47, 8 May 2011

Problem 17

In the eight-term sequence $A,B,C,D,E,F,G,H$, the value of $C$ is 5 and the sum of any three consecutive terms is 30. What is $A+H$?

$\text{(A)}\,17 \qquad\text{(B)}\,18 \qquad\text{(C)}\,25 \qquad\text{(D)}\,26 \qquad\text{(E)}\,43$

Solution

We consider the sum $A+B+C+D+E+F+G+H$ and use the fact that $C=5$, and hence $A+B=25$.

\begin{align*} &A+B+C+D+E+F+G+H=A+(B+C+D)+(E+F+G)+H=A+30+30+H=A+H+60\\ &A+B+C+D+E+F+G+H=(A+B)+(C+D+E)+(F+G+H)=25+30+30=85 \end{align*}

Equating the two values we get for the sum, we get the answer $A+H+60=85$ $\Longrightarrow$ $A+H=\boxed{25 \ \mathbf{(C)}}$.

See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions