Difference between revisions of "2011 USAJMO Problems"
(→Problem 4) |
|||
Line 18: | Line 18: | ||
=Day 2= | =Day 2= | ||
==Problem 4== | ==Problem 4== | ||
− | A ''word'' is defined as any finite string of letters. A word is a ''palindrome'' if it reads the same backwards as forwards. Let a sequence of words <math>W_0</math>, <math>W_1</math>, <math>W_2</math>, <math>\dots</math> be defined as follows: <math>W_0 = a</math>, <math>W_1 = b</math>, and for <math>n \ge 2</math>, <math>W_n</math> is the word formed by writing <math>W_{n - 2}</math> | + | A ''word'' is defined as any finite string of letters. A word is a ''palindrome'' if it reads the same backwards as forwards. Let a sequence of words <math>W_0</math>, <math>W_1</math>, <math>W_2</math>, <math>\dots</math> be defined as follows: <math>W_0 = a</math>, <math>W_1 = b</math>, and for <math>n \ge 2</math>, <math>W_n</math> is the word formed by writing <math>W_{n - 2}</math> followed by <math>W_{n - 1}</math>. Prove that for any <math>n \ge 1</math>, the word formed by writing <math>W_1</math>, <math>W_2</math>, <math>\dots</math>, <math>W_n</math> in succession is a palindrome. |
[[2011 USAJMO Problems/Problem 4|Solution]] | [[2011 USAJMO Problems/Problem 4|Solution]] |
Revision as of 14:17, 2 May 2011
Contents
Day 1
Problem 1
Find, with proof, all positive integers for which is a perfect square.
Problem 2
Let , , be positive real numbers such that . Prove that
Problem 3
For a point in the coordinate plane, let denote the line passing through with slope . Consider the set of triangles with vertices of the form , , , such that the intersections of the lines , , form an equilateral triangle . Find the locus of the center of as ranges over all such triangles.
Day 2
Problem 4
A word is defined as any finite string of letters. A word is a palindrome if it reads the same backwards as forwards. Let a sequence of words , , , be defined as follows: , , and for , is the word formed by writing followed by . Prove that for any , the word formed by writing , , , in succession is a palindrome.
Problem 5
Points , , , , lie on a circle and point lies outside the circle. The given points are such that (i) lines and are tangent to , (ii) , , are collinear, and (iii) . Prove that bisects .
Problem 6
Consider the assertion that for each positive integer , the remainder upon dividing by is a power of 4. Either prove the assertion or find (with proof) a counterexample.