Difference between revisions of "2011 AIME I Problems/Problem 11"
AlphaMath1 (talk | contribs) (→Solution 1) |
AlphaMath1 (talk | contribs) (→Solution 1) |
||
Line 4: | Line 4: | ||
== Solution 1== | == Solution 1== | ||
Note that the cycle of remainders of <math>2^n</math> will start after <math>2^2</math> because remainders of <math>1, 2, 4</math> will not be possible after (the numbers following will always be congruent to 0 modulo 8). Now we have to find the order. Note that <math>2^{100}\equiv 1\mod 125</math>. The order is <math>100</math> starting with remainder <math>8</math>. All that is left is find <math>S</math> in mod <math>1000</math> after some computation. | Note that the cycle of remainders of <math>2^n</math> will start after <math>2^2</math> because remainders of <math>1, 2, 4</math> will not be possible after (the numbers following will always be congruent to 0 modulo 8). Now we have to find the order. Note that <math>2^{100}\equiv 1\mod 125</math>. The order is <math>100</math> starting with remainder <math>8</math>. All that is left is find <math>S</math> in mod <math>1000</math> after some computation. | ||
− | <cmath>S=2^0+2^1+2^2+2^3+2^4...+2^102\equiv 2^103-1\equiv 8-1\equiv \boxed{007}\mod 1000</cmath> | + | <cmath>S=2^0+2^1+2^2+2^3+2^4...+2^{102}\equiv 2^{103}-1\equiv 8-1\equiv \boxed{007}\mod 1000</cmath> |
Revision as of 12:06, 19 March 2011
Problem
Let be the set of all possible remainders when a number of the form , a nonnegative integer, is divided by . Let be the sum of the elements in . Find the remainder when is divided by .
Solution 1
Note that the cycle of remainders of will start after because remainders of will not be possible after (the numbers following will always be congruent to 0 modulo 8). Now we have to find the order. Note that . The order is starting with remainder . All that is left is find in mod after some computation.