Difference between revisions of "2001 AMC 10 Problems/Problem 6"

(See Also)
(Solution)
Line 4: Line 4:
  
 
<math> \textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad\textbf{(E) }9 </math>
 
<math> \textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad\textbf{(E) }9 </math>
 
== Solution ==
 
 
Let <math> N=10a+b </math>. We want to find a number such that <math> ab+a+b=10a+b </math>.
 
 
If we subtract the quantity <math> a+b </math> from both sides, we are left with
 
 
<math> ab=9a </math>.
 
 
We can also divide both sides by a and we are left with
 
 
the units digits <math> b </math> is <math> \boxed{\textbf{(E) }9} </math>.
 

Revision as of 15:06, 16 March 2011

Problem

Let $P(n)$ and $S(n)$ denote the product and the sum, respectively, of the digits of the integer $n$. For example, $P(23) = 6$ and $S(23) = 5$. Suppose $N$ is a two-digit number such that $N = P(N) + S(N)$. What is the units digit of $N$?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad\textbf{(E) }9$