Difference between revisions of "2001 AMC 10 Problems/Problem 10"
Pidigits125 (talk | contribs) (Created page with '== Problem == If <math>x</math>, <math>y</math>, and <math>z</math> are positive with <math>xy = 24</math>, <math>xz = 48</math>, and <math>yz = 72</math>, then <math>x + y + z<…') |
Pidigits125 (talk | contribs) (→Solution) |
||
Line 24: | Line 24: | ||
<math> x=4 </math>. | <math> x=4 </math>. | ||
− | Since we know every variable's value, we can substitute it in for | + | Since we know every variable's value, we can substitute it in for <math> x+y+z = 4+6+12 = \boxed{\textbf{(D) }22} </math>. |
Revision as of 14:50, 16 March 2011
Problem
If , , and are positive with , , and , then is
Solution
Look at the first two equations in the problem.
and .
We can say that .
Given , we can substitute for and find
.
We can replace y into the first equation. .
Since we know every variable's value, we can substitute it in for .