Difference between revisions of "2011 AMC 12B Problems"
(→Problem 9) |
Coolguy00001 (talk | contribs) (I have no clue how to add images but here's a couple more problems done) |
||
Line 50: | Line 50: | ||
==Problem 8== | ==Problem 8== | ||
+ | Keiko walks once around a track at exactly the same constant speed every day. The sides of the track are straight, and the ends are semicircles. The track has width <math>6</math> meters, and it takes her <math>36</math> seconds longer to walk around the outside edge of the track than around the inside edge. What is Keiko's speed in meters per second? | ||
+ | |||
+ | <math>\textbf{(A)}\ \frac{\pi}{3} \qquad \textbf{(B)}\ \frac{2\pi}{3} \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}{3} \qquad \textbf{(E)}\ \frac{5\pi}{3}</math> | ||
+ | |||
+ | [[2011 AMC 12B Problems/Problem 8|Solution]] | ||
==Problem 9== | ==Problem 9== | ||
Line 59: | Line 64: | ||
==Problem 10== | ==Problem 10== | ||
+ | Rectangle <math>ABCD</math> has <math>AB=6</math> and <math>BC=3</math>. Point <math>M</math> is chosen on side <math>AB</math> so that <math>\angle AMD=\angle CMD</math>. What is the degree measure of <math>\angle AMD</math>? | ||
+ | |||
+ | <math>\textbf{(A)}\ 15 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 60 \qquad \textbf{(E)}\ 75</math> | ||
+ | |||
+ | [[2011 AMC 12B Problems/Problem 10|Solution]] | ||
==Problem 11== | ==Problem 11== | ||
+ | A frog located at <math>(x,y)</math>, with both <math>x</math> and <math>y</math> integers, makes successive jumps of length <math>5</math> and always lands on points with integer coordinates. Suppose that the frog starts at <math>(0,0)</math> and ends at <math>(1,0)</math>. What is the smallest possible number of jumps the frog makes? | ||
+ | |||
+ | <math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6</math> | ||
+ | |||
+ | [[2011 AMC 12B Problems/Problem 11|Solution]] | ||
==Problem 12== | ==Problem 12== |
Revision as of 18:53, 28 February 2011
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
Problem 1
What is
Problem 2
Josanna's test scores to date are , , , , and . Her goal is to raise her test average at least points with her next test. What is the minimum test score she would need to accomplish this goal?
Problem 3
LeRoy and Bernardo went on a week-long trip together and agreed to share the costs equally. Over the week, each of them paid for various joint expenses such as gasoline and car rental. At the end of the trip it turned out that LeRoy had paid dollars and Bernardo had paid dollars, where . How many dollars must LeRoy give to Bernardo so that they share the costs equally?
Problem 4
In multiplying two positive integers and , Ron reversed the digits of the two-digit number . His erroneous product was 161. What is the correct value of the product of and ?
Problem 5
Let be the second smallest positive integer that is divisible by every positive integer less than . What is the sum of the digits of ?
Problem 6
Two tangents to a circle are drawn from a point . The points of contact and divide the circle into arcs with lengths in the ratio . What is the degree measure of ?
Problem 7
Let and be two-digit positive integers with mean . What is the maximum value of the ratio ?
Problem 8
Keiko walks once around a track at exactly the same constant speed every day. The sides of the track are straight, and the ends are semicircles. The track has width meters, and it takes her seconds longer to walk around the outside edge of the track than around the inside edge. What is Keiko's speed in meters per second?
Problem 9
Two real numbers are selected independently and at random from the interval . What is the probability that the product of those numbers is greater than zero?
Problem 10
Rectangle has and . Point is chosen on side so that . What is the degree measure of ?
Problem 11
A frog located at , with both and integers, makes successive jumps of length and always lands on points with integer coordinates. Suppose that the frog starts at and ends at . What is the smallest possible number of jumps the frog makes?