Difference between revisions of "2010 AIME I Problems/Problem 4"
(→Solution) |
Baijiangchen (talk | contribs) |
||
Line 2: | Line 2: | ||
Jackie and Phil have two fair coins and a third coin that comes up heads with [[probability]] <math>\frac47</math>. Jackie flips the three coins, and then Phil flips the three coins. Let <math>\frac {m}{n}</math> be the probability that Jackie gets the same number of heads as Phil, where <math>m</math> and <math>n</math> are [[relatively prime]] positive integers. Find <math>m + n</math>. | Jackie and Phil have two fair coins and a third coin that comes up heads with [[probability]] <math>\frac47</math>. Jackie flips the three coins, and then Phil flips the three coins. Let <math>\frac {m}{n}</math> be the probability that Jackie gets the same number of heads as Phil, where <math>m</math> and <math>n</math> are [[relatively prime]] positive integers. Find <math>m + n</math>. | ||
− | == Solution == | + | == Solution 1== |
+ | This can be solved quickly and easily with generating functions. | ||
+ | |||
+ | Let <math>x^0 = 1</math> represent heads and <math>x</math> represent tails. | ||
+ | |||
+ | The generating functions for these coins are <math>(1+x)</math>,<math>(1+x)</math>,and <math>(4+3x)</math> in order. | ||
+ | |||
+ | The product is <math>3+10x+11x^2+4x^3</math>. | ||
+ | |||
+ | The sum of the coefficients squared is 784 and the sum of the squares of each coefficient is 246. | ||
+ | The probability is then <math> \frac{246}{784} = \frac{123}{392}</math>. | ||
+ | |||
+ | |||
+ | <math>123 + 392 = \boxed{515}</math> | ||
+ | |||
+ | == Solution 2== | ||
We perform [[casework]] based upon the number of heads that are flipped. | We perform [[casework]] based upon the number of heads that are flipped. | ||
Line 22: | Line 37: | ||
Finally, we take the sum: <math>\frac {9 + 100 + 121 + 16}{784} = \frac {246}{784} = \frac {123}{392}</math>, so our answer is <math>123 + 392 = \fbox{515}</math>. | Finally, we take the sum: <math>\frac {9 + 100 + 121 + 16}{784} = \frac {246}{784} = \frac {123}{392}</math>, so our answer is <math>123 + 392 = \fbox{515}</math>. | ||
+ | |||
+ | |||
+ | |||
== See also == | == See also == |
Revision as of 16:49, 18 November 2011
Contents
Problem
Jackie and Phil have two fair coins and a third coin that comes up heads with probability . Jackie flips the three coins, and then Phil flips the three coins. Let be the probability that Jackie gets the same number of heads as Phil, where and are relatively prime positive integers. Find .
Solution 1
This can be solved quickly and easily with generating functions.
Let represent heads and represent tails.
The generating functions for these coins are ,,and in order.
The product is .
The sum of the coefficients squared is 784 and the sum of the squares of each coefficient is 246. The probability is then .
Solution 2
We perform casework based upon the number of heads that are flipped.
- Case 1: No heads.
- The only possibility is TTT (the third coin being the unfair coin). The probability for this to happen to Jackie is Thus the probability for this to happen to both players is
- Case 2: One head.
- We can have either HTT, THT, or TTH. The first two happen to Jackie with the same chance, but the third happens of the time, since the unfair coin is heads instead of tails. With 3 possibilities for Jackie and 3 for Phil, there are a total of 9 ways for them both to have 1 head.
- Multiplying and adding up all 9 ways, we have a
- overall chance for this case.
- Case 3: Two heads.
- With HHT , HTH , and THH possible, we proceed as in Case 2, obtaining
- Case 4: Three heads.
- Similar to Case 1, we can only have HHH, which has chance. Then in this case we get
Finally, we take the sum: , so our answer is .
See also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |