Difference between revisions of "2011 AMC 10A Problems/Problem 11"
Thedrummer (talk | contribs) (Created page with '==Problem 11== Square <math>EFGH</math> has one vertex on each side of square <math>ABCD</math>. Point <math>E</math> is on <math>AB</math> with <math>AE=7\cdot EB</math>. What…') |
|||
Line 3: | Line 3: | ||
<math>\text{(A)}\,\frac{49}{64} \qquad\text{(B)}\,\frac{25}{32} \qquad\text{(C)}\,\frac78 \qquad\text{(D)}\,\frac{5\sqrt{2}}{8} \qquad\text{(E)}\,\frac{\sqrt{14}}{4} </math> | <math>\text{(A)}\,\frac{49}{64} \qquad\text{(B)}\,\frac{25}{32} \qquad\text{(C)}\,\frac78 \qquad\text{(D)}\,\frac{5\sqrt{2}}{8} \qquad\text{(E)}\,\frac{\sqrt{14}}{4} </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | Let <math>8s</math> be the length of the sides of square <math>ABCD</math>, then the length of one of the sides of square <math>EFGH</math> is <math>\sqrt{(7s)^2+s^2}=\sqrt{50s^2}</math>, and hence the ratio in the areas is <math>\frac{\sqrt{50s^2}^2}{(8s)^2}=\frac{50}{64} = \boxed{\frac{25}{32} \ \mathbf{(B)}}</math>. |
Revision as of 23:06, 15 February 2011
Problem 11
Square has one vertex on each side of square . Point is on with . What is the ratio of the area of to the area of ?
Solution
Let be the length of the sides of square , then the length of one of the sides of square is , and hence the ratio in the areas is .