Difference between revisions of "Divisor"

m (Definition)
Line 1: Line 1:
 
===Definition===
 
===Definition===
Any [[natural number]] <math>\displaystyle{d}</math> is called a divisor of a natural number <math>\displaystyle{n}</math> if there is a natural number <math>\displaystyle{k}</math> such that <math>n=kd</math> or, in other words, if <math>\displaystyle\frac nd</math> is also a natural number.
+
Any [[natural number]] <math>\displaystyle{d}</math> is called a divisor of a natural number <math>\displaystyle{n}</math> if there is a natural number <math>\displaystyle{k}</math> such that <math>n=kd</math> or, in other words, if <math>\displaystyle\frac nd</math> is also a natural number. See [[Divisibility]] for more information.
 +
 
 +
=== Notation===
 +
A common notation to indicate a number is a divisor of another is n|k. This means that n divides k.
  
 
===How many divisors does a number have===
 
===How many divisors does a number have===
Line 12: Line 15:
 
*[[Number theory]]
 
*[[Number theory]]
 
*[[GCD]]
 
*[[GCD]]
 +
*[[Divisibility]]

Revision as of 11:39, 21 June 2006

Definition

Any natural number $\displaystyle{d}$ is called a divisor of a natural number $\displaystyle{n}$ if there is a natural number $\displaystyle{k}$ such that $n=kd$ or, in other words, if $\displaystyle\frac nd$ is also a natural number. See Divisibility for more information.

Notation

A common notation to indicate a number is a divisor of another is n|k. This means that n divides k.

How many divisors does a number have

See main article, Counting divisors. If $n=p_1^{\alpha_1}\cdot\dots\cdot p_n^{\alpha_n}$ is the prime factorization of $\displaystyle{n}$, then the number $d(n)$ of different divisors of $n$ is given by the formula $d(n)=(\alpha_1+1)\cdot\dots\cdot(\alpha_n+1)$. It is often useful to know that this expression grows slower than any positive power of $\displaystyle{n}$ as $\displaystyle n\to\infty$. Another useful idea is that $d(n)$ is odd if and only if $\displaystyle{n}$ is a perfect square.

Useful formulae

See also