Difference between revisions of "2002 USAMO Problems/Problem 4"
(→Solution 3) |
|||
Line 78: | Line 78: | ||
===Solution 3=== | ===Solution 3=== | ||
− | Let <math>y=0</math>, so that the functional equation becomes <math>f(x^2)=xf(x)</math>. For positive <math>x</math>, then, <math>f(x)=x^{\frac{1}{2}}f(x^{\frac{1}{2}})=x^{\frac{1}{2}}x^{\frac{1}{4}}f(x^{\frac{1}{4}})=x^{\frac{1}{2}}x^{\frac{1}{4}}x^{\frac{1}{8}}f(x^{\frac{1}{8}})=\cdots =x^{\frac{1}{2}+\frac{1}{ | + | Let <math>y=0</math>, so that the functional equation becomes <math>f(x^2)=xf(x)</math>. For positive <math>x</math>, then, <math>f(x)=x^{\frac{1}{2}}f(x^{\frac{1}{2}})=x^{\frac{1}{2}}x^{\frac{1}{4}}f(x^{\frac{1}{4}})=x^{\frac{1}{2}}x^{\frac{1}{4}}x^{\frac{1}{8}}f(x^{\frac{1}{8}})=\cdots =x^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots}f(x^{\frac{1}{\infty}})</math>, which reduces to <math>xf(1)</math> for nonzero <math>x</math>. For <math>x=0</math>, we have <math>f(0)=0\cdot f(0)=0</math>. Thus, we have limited <math>f</math> to linear functions of the form <math>f(x)=kx</math> where <math>k</math> is a constant. We can verify that if <math>f(x)=kx</math>, then any value of <math>k</math> will work: <math>k(x^2-y^2)=x\cdot kx-y\cdot ky</math>, which is always true. |
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 15:44, 24 April 2010
Problem
Let be the set of real numbers. Determine all functions such that
for all pairs of real numbers and .
Solutions
Solution 1
We first prove that is odd.
Note that , and for nonzero , , or , which implies . Therefore is odd. Henceforth, we shall assume that all variables are non-negative.
If we let , then we obtain . Therefore the problem's condition becomes
.
But for any , we may set , to obtain
.
(It is well known that the only continuous solutions to this functional equation are of the form , but there do exist other solutions to this which are not solutions to the equation of this problem.)
We may let , to obtain .
Letting and in the original condition yields
But we know , so we have , or
.
Hence all solutions to our equation are of the form . It is easy to see that real value of will suffice.
Solution 2
As in the first solution, we obtain the result that satisfies the condition
.
We note that
.
Since , this is equal to
It follows that must be of the form .
Solution 3
Let , so that the functional equation becomes . For positive , then, , which reduces to for nonzero . For , we have . Thus, we have limited to linear functions of the form where is a constant. We can verify that if , then any value of will work: , which is always true.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.